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|

Delocalization of quantum information by unitary evolution
through a quantum channel over the entire system

As a result: input information cannot be deduced by local
measurements of the output

Close relation with the butterfly effect (quantum chaos): time
evolution of localized operators causes large commutators
with all other operators

[W(0),V(0)]=0 , [W(),V(0)]=C(t)

Page-Scrambled states: arbitrary subsystems, up to half dof,
are nearly maximally mixed

Information about that state cannot be learned from local
measurements

Haar-Scrambled states: any state evolved by a Haar random
unitary
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» The information needed to describe a black hole is encoded
on a co-dim one surface.

» Black holes and more generally (maximally) chaotic systems
are known to be the fastest scramblers!

t. ~fBlog N

» Chaoticity / integrability versus scrambling

(Maximally)
Integrable Chaotic
No Scrambling Fast Scrambling

» Q. Integrability: a set of N commuting operators A; such
that: [H, Al] =0
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» In classical physics
Ox(t)
Oxg

» Canonical quantization: [Larkin-Ovchinnikov '69]
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What is “Quantum Chaos”?

» Disclaimer: There is no mathematically ezact definition for
quantum chaos (instead we know some indicators)

v

In classical physics

ox(t
$x( ) o< |{x(t)7p0}Poisson| ~ e)\t

0z

» Canonical quantization: [Larkin-Ovchinnikov '69]

[2(6).0][2(1).0]"  —  [V(&), WI[V (), W]

v

The most widely accepted definition is the level statistics
Chaotic theory: Wigner-Dyson statistics P(s) = s*e™®
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“Quantum Chaos” versus Randomness

» Typical example w/ Wigner-Dyson level statistics:
Random Matrix Theory
focus: on energy spectrum NOT on fundamental dof’s

»* Random quantum circuits are extensively used to study
quantum chaos.

» A few chaotic Hamiltonians are known:

1. Sachdev—Ye-Kitaev Model (0+1 dim) (Random couplings)
2. Ising model in presence of (transverse and) longitudinal
fields (141 dim) (NO Randomness)

What happens at the fusion point of
randomness and Q. integrability?
Do we expect scrambling?
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Our Hamiltonian Setup

Generic quadratic bosonic model

N
Z piP ijPj + %sz% + ql[Rl]p]]

l\DlH

A canonical transformation: H = 5 Z -1 Qnanan
= Q. Intergability
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Our Hamiltonian Setup

Generic quadratic bosonic model

N
Z piP ijPj + %ng% + q’L[R’L]p]]

l\DlH

A canonical transformation: H = 5 Z -1 Qnanan
= Q. Intergability

1. Disordered Harmonic Lattice model
1 N

5 Jn
H:_Z n+6m qn+_(Qn+1_Qn)2:|
2,71 € €

Ji € (a,b) where a,b€eR
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N
Z piP ijPj + %ng% + q’L[R’L]p]]

l\DlH

A canonical transformation: H = 5 Z -1 Qnanan
= Q. Intergability

1. Disordered Harmonic Lattice model
1 N

5 Jn
H:_Z n+6m qn+_(Qn+1_Qn)2:|
2,71 € €

Ji € (a,b) where a,b€eR
2. Passive Random Mixing (Q € GOE, GUE)
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Our setup: Quantum Circuits
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Figure: Local Unitary Completely Random Unitary

(a single time step)
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Chaos versus Single-particle Chaos

s

» Chaos: Wigner-Dyson statistics P(s) =s%e”

n = 2000
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Chaos versus Single-particle Chaos

s

» Chaos: Wigner-Dyson statistics P(s) = s%e”

n = 2000

» Single-particle chaos: (Poisson statistics P(s) =e™*)
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Figure: single-particle sector complete spectrum
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Entanglement Measures

» For pure states, von Neumann entropy

pa=Trp[pap]l , Sa=-Tralpalogpal

» For mixed states, Logarithmic Negativity

st
€ =log\/ Pl Pl

— b1,b2
PAB = z Cayay |a1) (CL2| ® |b1) <b2|
a1,a2,b1,b2
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pa=Trp[pap]l , Sa=-Tralpalogpal

» For mixed states, Logarithmic Negativity

£ =1og\/ o35 o

pap= Y. P2 ar)(az| @ |br) (o
a1,a2,by,bs
I bo,b
paE= Y clalar) (az| @ [by) (Dol
a1,a2,b1,b2

> Mutual information
I(A:B)=S5S4+Sp-SaB
> Tripartite Mutual Information (TMI)
I(A:B:C)=S4+Sp+Sc—-Sap—Sac—Spc+Sapc
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Entanglement Spread

Saup: A Measure for Information Scrambling
A A B
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» Left: CFT-Universal (a connected region) [Calabrese-Cardy 05]
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Entanglement Spread

Saup: A Measure for Information Scrambling
A A B
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» Left: CFT-Universal (a connected region) [Calabrese-Cardy 05]

» Right: CFT-Nonuniversal (disconnected regions)
[Asplund,Bernamonti,Galli,Hartman ’15; Leichenauer,Moosa ’15, ...]

(8-pnt function in holographic CFTs = dashed curve)
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v

Right: CFT-Nonuniversal (disconnected regions)
[Asplund,Bernamonti,Galli,Hartman ’15; Leichenauer,Moosa ’15, ...]

(8-pnt function in holographic CFTs = dashed curve)

v

Maximal scrambling < Absence of dip in Saup

Dip in Syup < Peak in MI

v
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Entanglement Spread: Disordered Local Model

» Entanglement spread due to a quantum quench

—— RQPs
— RQPs
e HL
* DHL
0 0 20 40 60 80 100 120
0 20 40 60 80 100

t
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Entanglement Spread: Disordered Local Model

» Entanglement spread due to a quantum quench

—— RQPs
— RQPs
e HL
* DHL

0 20 40 60 80 100 120
0 20 40 60 80 100
t

» delocalization in mutual information

» Physical Description: Randomly distribution for
quasi-particles group velocity and entropy density

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403

10 / 18



Tripartite Mutual Information (TMI)

» Strong scrambler: local measurements on C' or D cannot
reveal much about local disturbence in A but I(A:CD) is
the total amount of information we can learn about A

time
input

B
P N LN
NN RN

u

[TTTTTTTT]
—_—

c D
output
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» This suggests a natural scrambling measure
I(A:CD)-I(A:C)-I(A:D)

the amount of infomation about A which is non-locally hiden
in C' and D that cannot be known by measuring C' or D
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» Strong scrambler: local measurements on C' or D cannot
reveal much about local disturbence in A but I(A:CD) is
the total amount of information we can learn about A

time

B
P N LN
NN RN

u

[TTTTTTTT]
—_—

c D
output

» This suggests a natural scrambling measure
I(A:CD)-I(A:C)-I(A:D)
the amount of infomation about A which is non-locally hiden
in C' and D that cannot be known by measuring C' or D
> Tripartite Mutual Information:
I3(A:C:D)=Ss+Sc+Sp—-Sac—Sap - Scp +Sacp
=I(A:C)+I(A:D)-I(A:CD)
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Tripartite Mutual Information (TMI)

» [3 may be positive, negative or zero in local models
[Casini-Huerta 08|
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Tripartite Mutual Information (TMI)

» [3 may be positive, negative or zero in local models
[Casini-Huerta ’08]

» Holographic states: monogamy of mutual information
[Hayden-Headrick-Maloney ’13]
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Tripartite Mutual Information (TMI)

» I3 may be positive, negative or zero in local models
[Casini-Huerta ’08]

» Holographic states: monogamy of mutual information
[Hayden-Headrick-Maloney ’13]
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> Evolution of a passive Haar unitary in large squeezing limit
denotes scrambling

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403 12 /18



SFF

» The analytical continuation of the partition function

Z(t,5) =Tr (e_(5+it)H)
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SFF

» The analytical continuation of the partition function
Z(t,p)="Tr (e_(5+it)H)

» Spectral form factor

g(t,B) =
» Slope-dip-ramp-plateau picture

Z(ﬁ)
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Figure: LEFT: Borrowed from Cotler et al. JHEP 1705:118, 2017
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» The analytical continuation of the partition function
Z(t,p)="Tr (e_(ﬁJrit)H)

» Spectral form factor
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Figure: LEFT: Borrowed from Cotler et al. JHEP 1705:118, 2017

» SYKs: exponential ramp [Winer-Jian-Swingle 20]
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Page Curve for Random Mixed States

» Properties of Page ’94 argument:
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Page Curve for Random Mixed States
» Properties of Page '94 argument:
1. The whole system is in a typical random pure state.

2. Radiation density matrix o identity (T' - o).

» Random (induced) mixed states [Shapourian et al. *21]
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Figure: Borrowed from PRX Quantum 2, 030347 (2021)
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Page Curve for Random Mixed States
» Properties of Page '94 argument:
1. The whole system is in a typical random pure state.

2. Radiation density matrix o identity (T' - o).

» Random (induced) mixed states [Shapourian et al. *21]
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Figure: Borrowed from PRX Quantum 2, 030347 (2021)

» L4 > Lp: Page state limit

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403

14 /18



Page Curve for Random Mixed States

» Properties of Page '94 argument:

1. The whole system is in a typical random pure state.

2. Radiation density matrix o identity (T' - o).

» Random (induced) mixed states [Shapourian et al. *21]
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Figure: Borrowed from PRX Quantum 2, 030347 (2021)
» L4 > Lp: Page state limit
» L4 < Lp: A is maximally entangled with B
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A Novel Time-scale in BH Evaporation

» The Page curve for a realistic (finite temperature) BH is
more complicated [Vardhan,Kudler-Flam,Shapourian,Liu ’22]
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A Novel Time-scale in BH Evaporation
» The Page curve for a realistic (finite temperature) BH is
more complicated [Vardhan,Kudler-Flam,Shapourian,Liu 22]

> t, <t, parties in radiation are correlated in a especial way!
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Figure: Borrowed from PRL 129, 061602 (2022)
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» The Page curve for a realistic (finite temperature) BH is
more complicated [Vardhan,Kudler-Flam,Shapourian,Liu 22]

> t, <t, parties in radiation are correlated in a especial way!
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Distillable?

Figure: Borrowed from PRL 129, 061602 (2022)

> Observation: &£ > I the argument:

EPPTexact 5 o5 1> 2> By

RO |~
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A Novel Time-scale in BH Evaporation
» The Page curve for a realistic (finite temperature) BH is
more complicated [Vardhan,Kudler-Flam,Shapourian,Liu 22]

> t, <t, parties in radiation are correlated in a especial way!

r

I

Distillable?

Figure: Borrowed from PRL 129, 061602 (2022)

> Observation: &£ > I the argument:

I
EPPTexact 5 o5 1>~ > By

\)

» The ‘result’ E. > Ej is interpreted as bound entanglement!
Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403 15 / 18



Convert a quantum state into EPR pairs

» Under a certain class of operations (LOCC or PPT), a
bipartite state can be converted to EPR pairs
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bipartite state can be converted to EPR pairs

» Operational perspective: A®" ® B®"
> (|(I)+) <q)+|)®n - p®n ) Eeost = ming, o %

> % — (|2:)(24)®" . Edistillable = MaXpooo 7y

v

For a bipartite pure state conversion is reversible
Ecost = Edistillable

» For a bipartite mixed state conversion is irreversible

FEcost > Edistillable

» Bound entanglement: if F.. > 0 and Ejgjstilable = 0
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» Theorem: no NPT bound entanglement exists in bipartite
GS [Giedke-Kraus-Lewenstein-Cirac ’02]

» Logarithmic negativity is continuous for this family of
states [Eisert-Simon-Plenio ’01]
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Conclusions

» We introduced bosonic quadratic random models
realizable in the lab with Gaussian boson sampling

» Randomness in local models results in memory effect
scrambling similar to holographic systems

» Passive unitary Haar evolution of squeezed states results in
tripartite mutual information scrambling

» Randomness distinct from quantum chaos can
effectively scramble quantum information

» Gaussian operations are capable for modeling basic
features of maximally scrambling many-body systems,
including evaporating black holes

» LN may exceed MI while this does NOT imply the
existence of bound entanglement
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» Gaussian Boson Sampling: A special-purpose model of
photonic quantum computation

[Hamilton-Regina-Kruse-Sansoni-Barkhofen-Silberhorn-Jex ’17]

» Preparing a multi-mode Gaussian state
Perform measurements in the Fock basis

» GS preparation: a sequence of
1. single-mode squeezing

(pi>qi) ~ (ekpi, 6_’\%)

2. multimode linear interferometry (Beam splitters ...)
corresponding to Bogoliubov transformations

3. single-mode displacements
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Our Setup: Vacuum State Realization
» We show that for periodic BC

S:Ssqueez'v s S-H-ST=Ewka;2ak
k

» The squeezing operator (wy = \/ m?2 + (2 sin 7;\';) )

g _ [diag (w;/ 2 ) 0
squeez 0 diag (w; 1/2 )

v

The squeezing parameters are
1

Mg = = logw

k=5 g Wk

» Reaching the scale-invariant regime requires infinite
squeezing for the zero-mode

v

In Lifshitz-invariant theories: Ay, = 5 logwy

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403

18 / 18



OTOC

> In classical physics

ox(t
g( ) ‘ &< |{x(t)7p0}Poisson| ~ e)\t
Zo

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403 18 / 18



OTOC

> In classical physics

oz (t)
Oz

» Canonical quantization: [Larkin-Ovchinnikov '69]

o< |{x(t)7p0}Poisson| ~ e)\t

[2(0).0][2(0).0]"  —  [V(&), W]V (), W]

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403 18 / 18



OTOC

> In classical physics

oz (t)
Oz

» Canonical quantization: [Larkin-Ovchinnikov '69]

o< |{x(t)7p0}Poisson| ~ e)\t

[2(6),p][2(1),p)"  ~  [V(),W][V(6), W]

For a system with n particles

[2:(t), p;1[2: (), 5;]1

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403

18 / 18



OTOC

> In classical physics

oz (t)
Oz

» Canonical quantization: [Larkin-Ovchinnikov '69]

o< |{x(t)7p0}Poisson| ~ e)\t

[2(6),p][2(1),p)"  ~  [V(),W][V(6), W]

For a system with n particles
[2:(), p;1[2:(t), ;1"

» Exponential growth

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403

18 / 18



OTOC

> In classical physics

oz (t)
Oz

» Canonical quantization: [Larkin-Ovchinnikov '69]

o< |{x(t)7p0}Poisson| ~ e)\t

[2(),p)[2(1),0)"  —  [V(&), W]V ($), W]
For a system with n particles
[2:(), p;1[2:(t), ;1"

» Exponential growth

> Counterexamples:

1. Inverted harmonic oscillator [Hashimoto-Huh-Kim-Watanabe ’20]
2. Discrete sine-Gordon theory [Xu-Scaffidi-Cao ’20]
3. LMG spin model [Pilatowsky-Cameo et al. ’20]
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