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Introduction to Scrambling of QI

▸ Delocalization of quantum information by unitary evolution
through a quantum channel over the entire system

▸ As a result: input information cannot be deduced by local
measurements of the output

▸ Close relation with the butterfly effect (quantum chaos): time
evolution of localized operators causes large commutators
with all other operators

[W (0), V (0)] = 0 , [W (t), V (0)] = C(t)

▸ Page-Scrambled states: arbitrary subsystems, up to half dof,
are nearly maximally mixed
Information about that state cannot be learned from local
measurements

▸ Haar-Scrambled states: any state evolved by a Haar random
unitary
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Scrambling and Holography

▸ The information needed to describe a black hole is encoded
on a co-dim one surface.

▸ Black holes and more generally (maximally) chaotic systems
are known to be the fastest scramblers!

t∗ ∼ β log N

▸ Chaoticity / integrability versus scrambling
(Maximally)

ChaoticIntegrable
Fast ScramblingNo Scrambling

▸ Q. Integrability: a set of N commuting operators Ai such
that: [H, Ai] = 0
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What is “Quantum Chaos”?
▸ Disclaimer: There is no mathematically exact definition for

quantum chaos (instead we know some indicators)

▸ In classical physics

∣∂x(t)
∂x0

∣∝ ∣{x(t), p0}Poisson∣ ∼ eλt

▸ Canonical quantization: [Larkin-Ovchinnikov ’69]

[x̂(t), p̂][x̂(t), p̂]† → [V̂ (t), Ŵ ][V̂ (t), Ŵ ]†

▸ The most widely accepted definition is the level statistics
Chaotic theory: Wigner-Dyson statistics P (s) = sα e−s
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▸ The most widely accepted definition is the level statistics
Chaotic theory: Wigner-Dyson statistics P (s) = sα e−s

0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

n = 2000

0 1 2 3 4
0

50

100

150

200

Ali Mollabashi Scrambling on the Edge IPM, 28 Azar 1403 3 / 18



What is “Quantum Chaos”?
▸ Disclaimer: There is no mathematically exact definition for

quantum chaos (instead we know some indicators)
▸ In classical physics

∣∂x(t)
∂x0

∣∝ ∣{x(t), p0}Poisson∣ ∼ eλt

▸ Canonical quantization: [Larkin-Ovchinnikov ’69]

[x̂(t), p̂][x̂(t), p̂]† → [V̂ (t), Ŵ ][V̂ (t), Ŵ ]†
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“Quantum Chaos” versus Randomness

▸ Typical example w/ Wigner-Dyson level statistics:
Random Matrix Theory

focus: on energy spectrum NOT on fundamental dof’s

▸ Random quantum circuits are extensively used to study
quantum chaos.

▸ A few chaotic Hamiltonians are known:
1. Sachdev–Ye–Kitaev Model (0+1 dim) (Random couplings)
2. Ising model in presence of (transverse and) longitudinal

fields (1+1 dim) (NO Randomness)

What happens at the fusion point of
randomness and Q. integrability?

Do we expect scrambling?
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Our Hamiltonian Setup

Generic quadratic bosonic model

H = 1
2

N

∑
n=1
[piPijpj + qiQijqj + qiRijpj]

A canonical transformation: H = 1
2 ∑

N
n=1 Ωna†

nan

⇒ Q. Intergability

1. Disordered Harmonic Lattice model

H = 1
2

N

∑
n=1
[p

2
n

ϵ
+ ϵ m2q2

n +
Jn

ϵ
(qn+1 − qn)2]

Ji ∈ (a, b) where a, b ∈ R

2. Passive Random Mixing (Q ∈ GOE, GUE)
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Our setup: Quantum Circuits
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Figure: Local Unitary Completely Random Unitary
(a single time step)
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Chaos versus Single-particle Chaos
▸ Chaos: Wigner-Dyson statistics P (s) = sα e−s
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▸ Single-particle chaos: (Poisson statistics P (s) = e−s)
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Figure: single-particle sector complete spectrum
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Entanglement Measures
▸ For pure states, von Neumann entropy

ρA = TrB [ρAB] , SA = −TrA [ρA log ρA]
▸ For mixed states, Logarithmic Negativity

E = log
√

ρΓB
AB

†
ρΓB

AB

ρAB = ∑
a1,a2,b1,b2

cb1,b2
a1,a2 ∣a1⟩ ⟨a2∣⊗ ∣b1⟩ ⟨b2∣

ρΓB
AB = ∑

a1,a2,b1,b2

cb2,b1
a1,a2 ∣a1⟩ ⟨a2∣⊗ ∣b1⟩ ⟨b2∣

▸ Mutual information
I(A ∶ B) = SA + SB − SAB

▸ Tripartite Mutual Information (TMI)
I(A ∶ B ∶ C) = SA + SB + SC − SAB − SAC − SBC + SABC
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Entanglement Spread
SA∪B: A Measure for Information Scrambling

A A B

Extensive Entropy

Universal Linear Growth

time

SA

No scrambling

Maximal scrambling

time

SA⋃B

▸ Left: CFT-Universal (a connected region) [Calabrese-Cardy ’05]

▸ Right: CFT-Nonuniversal (disconnected regions)
[Asplund,Bernamonti,Galli,Hartman ’15; Leichenauer,Moosa ’15, ...]
(8-pnt function in holographic CFTs ⇒ dashed curve)

▸ Maximal scrambling ⇔ Absence of dip in SA∪B

▸ Dip in SA∪B ⇔ Peak in MI
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Entanglement Spread: Disordered Local Model

▸ Entanglement spread due to a quantum quench

HL
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RQPs
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▸ delocalization in mutual information
▸ Physical Description: Randomly distribution for

quasi-particles group velocity and entropy density
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Tripartite Mutual Information (TMI)
▸ Strong scrambler: local measurements on C or D cannot

reveal much about local disturbence in A but I(A ∶ CD) is
the total amount of information we can learn about A

▸ This suggests a natural scrambling measure
I(A ∶ CD) − I(A ∶ C) − I(A ∶D)

the amount of infomation about A which is non-locally hiden
in C and D that cannot be known by measuring C or D

▸ Tripartite Mutual Information:
I3(A ∶ C ∶D) = SA + SC + SD − SAC − SAD − SCD + SACD

= I(A ∶ C) + I(A ∶D) − I(A ∶ CD)
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Tripartite Mutual Information (TMI)

▸ I3 may be positive, negative or zero in local models
[Casini-Huerta ’08]

▸ Holographic states: monogamy of mutual information
[Hayden-Headrick-Maloney ’13]
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▸ Evolution of a passive Haar unitary in large squeezing limit
denotes scrambling
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SFF
▸ The analytical continuation of the partition function

Z(t, β) = Tr(e−(β+it)H)

▸ Spectral form factor

g(t, β) = ∣Z(t, β)
Z(β)

∣
2

▸ Slope-dip-ramp-plateau picture
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Figure: LEFT: Borrowed from Cotler et al. JHEP 1705:118, 2017

▸ SYK2: exponential ramp [Winer-Jian-Swingle ’20]
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Page Curve for Random Mixed States
▸ Properties of Page ’94 argument:

1. The whole system is in a typical random pure state.
2. Radiation density matrix ∝ identity (T →∞).

▸ Random (induced) mixed states [Shapourian et al. ’21]

Figure: Borrowed from PRX Quantum 2, 030347 (2021)
▸ LA ≫ LB: Page state limit
▸ LA ≪ LB: A is maximally entangled with B
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A Novel Time-scale in BH Evaporation
▸ The Page curve for a realistic (finite temperature) BH is

more complicated [Vardhan,Kudler-Flam,Shapourian,Liu ’22]

▸ tb < tp parties in radiation are correlated in a especial way!

Figure: Borrowed from PRL 129, 061602 (2022)

▸ Observation: E ≥ I the argument:

EPPT,exact
c ≥ E ≥ I ≥ I

2
≥ Ed

▸ The ‘result’ Ec ≫ Ed is interpreted as bound entanglement!
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Convert a quantum state into EPR pairs
▸ Under a certain class of operations (LOCC or PPT), a

bipartite state can be converted to EPR pairs

▸ Operational perspective: A⊗n ⊗B⊗n

▸ (∣Φ+⟩ ⟨Φ+∣)⊗n Ð→ ρ⊗n , Ecost ∶=minn→∞
m
n

▸ ρ⊗n Ð→ (∣Φ+⟩ ⟨Φ+∣)⊗n , Edistillable ∶=maxn→∞
m
n

▸ For a bipartite pure state conversion is reversible

Ecost = Edistillable

▸ For a bipartite mixed state conversion is irreversible

Ecost > Edistillable

▸ Bound entanglement: if Ecost > 0 and Edistillable = 0
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A Gaussian Model for BH Evaporation
▸ Random Gaussian unitary evolution of Gaussian states

▸ For intermediate mean squeezing we find tb < tp
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▸ Theorem: no NPT bound entanglement exists in bipartite
GS [Giedke-Kraus-Lewenstein-Cirac ’02]

▸ Logarithmic negativity is continuous for this family of
states [Eisert-Simon-Plenio ’01]
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Conclusions

▸ We introduced bosonic quadratic random models
realizable in the lab with Gaussian boson sampling

▸ Randomness in local models results in memory effect
scrambling similar to holographic systems

▸ Passive unitary Haar evolution of squeezed states results in
tripartite mutual information scrambling

▸ Randomness distinct from quantum chaos can
effectively scramble quantum information

▸ Gaussian operations are capable for modeling basic
features of maximally scrambling many-body systems,
including evaporating black holes

▸ LN may exceed MI while this does NOT imply the
existence of bound entanglement
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Experimental Realization!

▸ Gaussian Boson Sampling: A special-purpose model of
photonic quantum computation
[Hamilton-Regina-Kruse-Sansoni-Barkhofen-Silberhorn-Jex ’17]

▸ Preparing a multi-mode Gaussian state
Perform measurements in the Fock basis

▸ GS preparation: a sequence of
1. single-mode squeezing

(pi, qi)→ (eλpi, e−λqi)

2. multimode linear interferometry (Beam splitters ...)
corresponding to Bogoliubov transformations

3. single-mode displacements
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Our Setup: Vacuum State Realization
▸ We show that for periodic BC

S = Ssqueez ⋅ V , S ⋅H ⋅ ST =∑
k

ωk a†
kak

▸ The squeezing operator (ωk =
√

m2 + (2 sin πk
N
)2)

Ssqueez =
⎛
⎝

diag(ω1/2
k ) 0

0 diag(ω−1/2
k )

⎞
⎠

▸ The squeezing parameters are

λk =
1
2

log ωk

▸ Reaching the scale-invariant regime requires infinite
squeezing for the zero-mode

▸ In Lifshitz-invariant theories: λk = z
2 log ωk
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OTOC
▸ In classical physics

∣∂x(t)
∂x0

∣∝ ∣{x(t), p0}Poisson∣ ∼ eλt

▸ Canonical quantization: [Larkin-Ovchinnikov ’69]

[x̂(t), p̂][x̂(t), p̂]† → [V̂ (t), Ŵ ][V̂ (t), Ŵ ]†

For a system with n particles

[x̂i(t), p̂j][x̂i(t), p̂j]†

▸ Exponential growth
▸ Counterexamples:

1. Inverted harmonic oscillator [Hashimoto-Huh-Kim-Watanabe ’20]
2. Discrete sine-Gordon theory [Xu-Scaffidi-Cao ’20]
3. LMG spin model [Pilatowsky-Cameo et al. ’20]
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