

1st IPM Workshop on Accelerator Physics and Engineering:

Fundamentals of Particle Accelerators Design and Construction

Theory and Design of Charged Particle Beams

A. Mash'al

October 11-12, 2023 (Mehr 19-20, 1402) School of Particles and Accelerators

OUTLINE

- Principle of synchrotron radiation
- Synchrotron light source
- Basic physics of storage ring
- Emittance and lattice structure
- Lattice structure for ILSF storage ring
- Nonlinear optimization

Properties of Radiation

• Spectrum of electro-magnetic radiation

Synchrotron radiation is used for experiments typically over this region

Properties of Radiation

Light characteristics suitable for experiments

- High brilliance
- Coherence
- Polarization
- Short pulse
- Stability
- Wide spectral range
- Higher photon energies

Low brightness: low photon density on sample

High brightness: high photon density on sample

Flux of radiation: number of photons per second

Brightness of radiation: flux at a specific wavelength divided by source size and divergence

Coherence of radiation: are the photons produced in phase or not?

Polarization of radiation: directionality of radiation field linear, circular partial/full polarization

Synchrotron light sources give some control over all these properties

Where X-RAYS Come From

- Accelerated charged particles are emitting electromagnetic radiation.
- We can move charged particles using the Lorentz force.

$$\vec{F} = q \; (\vec{E} + \vec{v} \times \vec{B})$$

• If the charged particle is moving very fast, the radiation is emitted in a cone, with aperture $\frac{1}{2}$

•
$$(\gamma = \frac{E}{E_0}, E_{e0} = 0.511 \, MeV, E_{p0} = 938 \, MeV)$$

Bending Magnet Radiation

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

Undulator Radiation

We can build magnets to have this kind of trajectory inside: undulators and wigglers

30

Wiggler

Bending magnet

25

20

Synchrotron Light Source

Light Sources Around The World

Synchrotron Light Source

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

Brightness

Brightness:

The concentration of radiation is called the brightness, measured in: **Photons/(s,mm², mrad²,0.1% bandwidth)**

 $B = \frac{F}{4\pi^{2}\Sigma_{x}\Sigma_{x}, \Sigma_{y}\Sigma_{y'}}$ $\Sigma_{x,y} = \sqrt{\sigma_{x,y}^{2} + \sigma_{\lambda}^{2}}$ $\Sigma_{x',y'} = \sqrt{\sigma_{x,y}'^{2} + \sigma_{\lambda}'^{2}}$

Convoluted size

Convoluted divergence

For Undulator with
$$L_u = N_u \lambda_u$$

$$\sigma_{\lambda} = \sqrt{\frac{\lambda_n L_u}{8\pi^2}}, \ \sigma'_{\lambda} = \sqrt{\frac{\lambda_n}{2L_u}}$$
$$\lambda_n = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2}\right), \ K = 0.9336B_0\lambda_u$$

Emittance:

The emittance represents the electron beam transverse size and divergence. It could be defined as a total phase space area occupied by the beam. $\epsilon_x = \sigma_x \sigma'_x$ $\epsilon_y = \sigma_y \sigma'_y$

pushing the emittance to lower values is an efficient way to increase the brightness

Diffraction Limit

Diffraction Limit:

- Because of diffraction, the lower limit on the photon beam emittance is given approximately by the wavelength, λ . Using standard deviation values for Gaussian distributions, this diffraction-limited photon beam emittance is given by $\lambda/4\pi$.
- For the light produced by electron beam, photon beam brightness increases as electron beam emittance decrease until the electron beam emittance reaches the diffraction limit.
- All storage rings are diffraction limited for some λ .

		Wavelength [nm]	Photon energy [eV]	Diffraction Lir	nit [nm rad]
Visible light		400-700	1.7 - 3	30 - 50	
UV		10 - 400	3 - 123	- 123 0.79 - 30	
VUV		100-200	6 - 12	8 - 16	
Soft X-ray		1.2 - 12	100 - 1000	0.08 - 0.8	
Hard X-ray		0.12 – 0.24	5000 - 10000	0.010 - 0.020	
Light		Source Generation	Emittance [nm – rad	1] [k	
Second Third Fourth		d	few hundred		
			5-20		
		า	<1		C

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

Basic Physics of Storage Ring

,

The most convenient coordinate system to describe particle motion is the curvilinear (Frenet-Serret) system that follows with the particle along the reference path.

Equation of motion :

$$\frac{1}{\rho} (\mathrm{m}^{-1}) = \frac{B}{B\rho} = 0.2998 \frac{|B(\mathrm{T})|}{\beta E(\mathrm{GeV})} \qquad \kappa_x = \frac{1}{1+\delta} \left(\kappa_{0x} + kx + \frac{1}{2}mx^2 + \dots\right)$$

$$\frac{1}{p} = \frac{1}{p_0(1+\delta)} \approx \frac{1}{p_0} (1-\delta+\dots).$$
Source of Chromatic error
$$x'' + \underbrace{(k+\kappa_{0x}^2)}_{\mathrm{Focusing term}} x = \underbrace{\kappa_{0x}(\delta-\delta^2)}_{\mathrm{Focusing term}} + \underbrace{(k+\kappa_{0x}^2)x\delta}_{\mathrm{Focusing term}} - \frac{1}{2}mx^2 - \kappa_0 kx^2 + \mathcal{O}(3).$$
Sextupole term

Basic Physics of Storage Ring

equations of motion in the approximation of linear beam dynamics :

 $x'' + (k_0 + \kappa_{0x}^2) x = 0,$ $y'' - k_0 y = 0.$ u'' + k(z) u = 0, $u(z) = \sqrt{\epsilon} \sqrt{\beta(z)} \cos[\psi(z) - \psi_0],$ $\psi(z) = \int_0^z \frac{d\overline{z}}{\beta(\overline{z})} + \psi_0.$

$$\gamma u^2 + 2\alpha \, u u' + \beta \, {u'}^2 = \epsilon.$$

Low Emittance Lattices and the Diffraction Limit

The horizontal emittance in an electron storage ring scales as the square of the electron energy and the third power of the bending angle.

$$\epsilon_{diff}(\lambda) = \frac{\lambda}{4\pi} \qquad \qquad \epsilon_x \sim F(lattice) E^2 \theta^3 \qquad \qquad \epsilon_x = C_q \frac{\gamma^2}{J_x} \frac{\oint H(s)/\rho(s)^3 ds}{\oint 1/\rho(s)^2 ds}$$

$$H(s)=\gamma(s)\eta(s)^2+2\alpha(s)\eta(s)\eta'(s)+\beta(s)\eta'(s)^2$$

$$\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)} \qquad \qquad \alpha(s) = -\frac{\beta'(s)}{2} \qquad \qquad \eta(s) = \frac{\Delta X}{\Delta p/p_0}$$

Radiation Integrals

Many of the critical properties of the stored beam in an electron storage ring are determined by the well-known radiation integrals.

The equilibrium state, by which the equilibrium parameters such as energy spread, emittance, and bunch length are determined, is reached when quantum excitation and damping are of equal strength.

Radiation Integrals	Parameters name	Parameters	
$I_1 = \oint \frac{\eta_x}{\rho} ds$	Momentum compaction	$\alpha_c = \frac{I_1}{C}$	
$I_2 = \oint \frac{1}{\rho^2} ds$	Energy loss per turn	$U_0 = \frac{2r_e E^4 I_2}{3(mc^2)^3}$	
$I_3 = \oint \frac{1}{ \rho^3 } ds$	Energy spread	$\sigma_{\epsilon}^{2} = \frac{55}{32\sqrt{3}} \frac{\hbar\gamma^{2}}{mc} \frac{I_{3}}{2I_{2}+I4}$	
$I_4 = \oint \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2k \right) ds$	Damping partitions	$J_x = 1 - \frac{I_4}{I_2}$, $I_\epsilon = 2 + \frac{I_4}{I_2}$	
$I_5 = \oint \frac{\mathrm{H}_x}{ \rho^3 } ds$	Damping time	$\tau_i = \frac{C\rho}{13.2J_i E^3}$	
$k = \frac{e}{P_0} \frac{\partial B_y}{\partial x}$	Emittance	$\epsilon = \frac{55}{22\sqrt{2}} \frac{\hbar \gamma^2}{mc} \frac{I_5}{I_2 - I_4}$	
$\mathbf{H}_x = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_{px} + \beta_x \eta_{px}^2$		$32\sqrt{3}$ mc $12-14$	

Storage Ring Magnets

Bending magnets (dipoles)

have uniform constant vertical magnetic field $B_y=B_0$ They bend the beam and they define the circular trajectory.

Quadrupoles:

magnetic field is linear with the distance from the center $B_y=K_1x$ They are used to focus the beam.

Sextupoles:

magnetic field is quadratic with the distance from the center $B_y=K_2x^2$ They are used to correct chromatic effects.

Storage Ring Magnets

حاەدانشھاىينيادى

FODO Lattice

The most simple periodic lattice would be a sequence of equidistant focusing quadrupoles of equal strength. Each half of such a lattice period is composed of a focusing (F) and a defocusing (D) quadrupole with a drift space (O) in between forming a FODO sequence.

The FODO lattice is the most widely used lattice especially in high energy accelerator systems because of its simplicity, flexibility, and its beam dynamical stability.

FODO Lattice

OPA Lattice Design Code

Linear Lattice Design

http://ados.web.psi.ch/opa/

FODO parameter κ by

$$\kappa = \frac{f}{L} > 1 \qquad \qquad f^{-1} = k\ell \,.$$

Drift	1
BE length	1
QU length	0.2
К	1
Bending angle	10
N period	18

🚳 OPA 3.91d		×
File Edit Design	Track Extra	
Editor	Optics Design Sextupoles Phase Space	
acti∨e File acti∨e Segment	New select! Show Lattice	
Expanded Lat	tice structure: nts)	~
		\sim

OPA Lattice Design

🛞 Editor	– 🗆 X	③ OPA 3.91d - □ ×
Global Parameters Beam Energy	L.0000 GeV _{Comment}	File Edit Design Track Extra Editor Optics Design Sextupoles Phase Space active File New
Elements and Variables	Segments	active Segment select! Show Lattice
	Create an Element – Create a new element Kind Select Drift Name Quadrupole Bending Sextupole	<pre> X</pre>
Invert all dipole polarities Set all apertures to (x/y	in mm): 50.0 50.0 Exit	

OPA Lattice Design

Page: 22

OPA Lattice Design

Tune Diagram

The number of transverse oscillations a particle describes per turn as **tune Q** of the machine.

$$Q := \frac{1}{2\pi} \oint_C \mu(s) \mathrm{d}s$$

$$Q = Q_{\rm int} + q_{\rm frac}$$

resonance condition :

$$m \cdot Q_x + n \cdot Q_y = p$$

The order of the resonance is given by |m| + |n|.

پژوهشگاهدانشهای بنیادی

Lattice Structure

$$\epsilon = F C_q \gamma^2 \theta^3 \qquad \qquad C_q \approx 3.832 \times 10^{-13}$$

Lattice Style	F	Conditions
90° FODO	$2\sqrt{2}$	$f = L/\sqrt{2}$
137° FODO	1.2	Minimum emittance FODO
DBA	$\frac{1}{4\sqrt{15}}$	$eta_{x,0}pprox \sqrt{12/5}L$, $lpha_{x,0}pprox \sqrt{15}$
TME	$\frac{1}{12\sqrt{15}}$	$\eta_{x,min} \approx \frac{L\theta}{24}, \beta_{x,min} \approx L/2\sqrt{15}$
MBA	$\frac{1}{12\sqrt{15}} \left(\frac{M+1}{M-1}\right)$	M dipoles (with same radius of curvature) per cell

Lattice Structure

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

ILSF – MBA Lattice

- MBA lattice proposed for the first time in 1998.
- MBA structure satisfies at the same time all the criteria for pushing down the emittance.
- MBA needs much stronger magnets to squeeze beam dimension to much smaller values It means that we need small aperture vacuum pipe.

Table 1				
Main parameters of ILSF storage ring.				
Parameter	Symbol	Unit	Value	
Energy	Е	GeV	3	
Circumference	С	m	528	
Number of super period	-	-	20	
Length of straight section		m	7.021	
Natural emittance	ε	pm rad	270	
Betatron tune	Q_x/Q_y		44.16/16.20	
Natural chromaticity	ξ_x/ξ_y		-107.79/-61.30	
1st order momentum compaction	ac		1.824×10^{-4}	
factor				
Natural energy loss per turn	U_0	keV	406.4	
Natural energy spread	Δ		6.79×10^{-4}	
Damping times	$\tau_x/\tau_y/\tau_s$	ms	18.857/26.002/16.039	
Radiation integral, I_1	I_1	m	9.631×10^{-2}	
Radiation integral, I_2	I_2	1/m	3.564×10^{-1}	
Radiation integral, I_3	I ₃	1/m ²	2.021×10^{-2}	
Radiation integral, I_4	I_4	1/m	-1.350×10^{-1}	
Radiation integral, I_5	I ₅	1/m	1.003×10^{-5}	
beta function at straight section	β_x / β_y	m/m	17.787/3.294	
Min/Max horizontal beta function	$\beta_{x_{max}}/\beta_{x_{min}}$	m/m	0.207/18.608	
Min/Max vertical beta function	$\beta_{y_{max}}/\beta_{y_{min}}$	m/m	1.740/27.195	
Min/Max horizontal dispersion	η_{xMin}/η_{xMax}	cm/cm	0.000/7.776	
RF frequency		MHz	100	

Challenges of Multi Bend Achromat lattice

Challenges of Multi Bend Achromat lattice

Fig. 8 Vacuum chamber comparison between 3GSR and 4GSR in DIAMOND

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

Nonlinear optimization

Quadrupole focusing strength depends on the particle momentum

Page: 30

Nonlinear optimization

Using the sextupole fields will make the dynamics of electrons nonlinear

Sextupole field :
$$(B_x = gxy, B_y = \frac{1}{2}g(x^2 - y^2))$$

Produce geometric aberration, higher order chromaticity and resonance deriving terms

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

كاددانتسهاىيت

Nonlinear optimization

- Traditional approach to nonlinear dynamics optimization:
 - varying the strengths and positions of different sextupole families
 - adding higher-order multipole magnets
 - changing the fractional betatron tunes
 - varying the lattice functions at locations of nonlinear magnets

the optimization must be performed with the aid of a computer program such as OPA, elegant, AT, MAD-X,...

 to improve the nonlinear behavior of the lattice, one needs to minimize tune shifts with amplitude and momentum, as well as the strength of driving terms for nearby resonances

 to improve the nonlinear behavior of the lattice, one needs to minimize tune shifts with amplitude and momentum, as well as the strength of driving terms for nearby resonances

1st IPM Workshop on Accelerator Physics and Engineering, October 11-12, 2023

Thank you for your attention

Page: 35 Particle Accelerator Course, School of Particles and Accelerators, IPM, Fall 2023, A.Mash'al