

EW @ CMS

Saeid Paktinat Mehdiabadi School of Particles and Accelerators, IPM

One Day Workshop on New Results at the CMS Experiment with Emphasis on the Higgs Boson, 27 December 2012

The "CMS" detector for LHC

Why Electroweak @ CMS?

W and Z production at hadron colliders:

- Test of the Standard Model predictions at TeV scale
- Performance measurements of the detectors calibration
- Unique test and contribution to the Parton Density Distribution (PDF)
- Precision test of pQCD and input to event generators
- Better understanding of background to Higgs and new physics searches

Why EW @ CMS?

- Search for squarks and gluinos in jets + MET.
- Invisible Z is estimated with γ+jets and Z(→µµ)+jets.
- WW and ZZ are the main channels to look for Higgs.

W/Z Production Cross Sections

- Clean standard candle
- Two high-pT isolated leptons
- Small background O(1%)
- Results systematically limited

Muonic channel

• Much less bkg!

Z Production

27/12/2012

CMS-PAS-SMP-12-011

W/Z Production Cross Section (N data - N bkg) $\varepsilon \times L \times \Delta x$ Systematics Luminosity

dσ

dx

W/Z Production Cross Section @ 7 TeV

A small fraction of the data is used for this meaurement.

CMS-PAS-EWK-10-005

Positive vs Negative

- Measurements are consistent with the predictions.
- No room for the new physics yet!

CMS-PAS-EWK-10-005

CMS

More Comparisons

 $\sqrt{s} = 8 \text{ TeV}$

CMS-PAS-SMP-12-011

Differential Cross Section

Muon Charge Asymmetry

Z-Pt, Jet Multiplicity Good prediction even in extreme conditions

Different Event Generators

16

Lepton Universality

anomalous Triple Gauge Couplings

- Neutral TGC are not allowed in the standard model
- Observation of either neutral TGC or deviations
 from the SM charged TGC
 would be an evidence of
 new physics

Wγ

CMS-PAS-EWK-11-009

Constraints on New Physics

CMS-PAS-EWK-11-009

Constraints on New Physics

CMS-PAS-EWK-11-009

22

First observation of $Z \rightarrow 4l$ in pp collisions

- Standard candle for four lepton events in similar phase space to Higgs search
- Theoretical expectations
 - BR: 4.45×10⁻⁰⁶

D.

Cross Section: I 20 ± 4.92 fb

Final state channels	N	4e	\4µ<	2e2µ	4ℓ
Irreducible background (pp $\rightarrow Z\gamma^* \rightarrow 4\ell$)		0.07	0.25	0.14	0.46 ± 0.05
Other (reducible) backgrounds		0.01	/ /10.0	0.05	0.07 ± 0.1
Expected signal (pp $\rightarrow Z \rightarrow 4\ell$)	11	3,8	13.6 🖂	12.0	29.4 ± 2.6
Total expected (simulation)		-3.9	13.9	12.2	30.0 ± 2.6
Observed events		2	14	12	28
Yield from fit to the observed mass distribut	ion	<u>\</u> -	13.6 ± 3.8	11.5 ± 3.1	27.3 ± 5.4

$$\sigma \times BR(Z \to 4\ell) = 125^{+26}_{-23}(\text{stat})^{+9}_{-6}(\text{syst})^{+7}_{-5}(\text{lumi}) \text{ fb},$$

$$BR(Z \rightarrow 4\ell) = 4.4^{+1.0}_{-0.8}(\text{stat}) \pm 0.2(\text{syst}) \times 10^{-6}.$$

Evans, HCP 2012

ZZ @ 8 TeV


```
• SM: \sigma_{ZZ} = 7.7 \pm 0.4 \text{ pb}
```

CMS-PAS-SMP-12-014

WW @ 8 TeV

CMS

- σ_{ww} = 69.9 ± 2.8 (stat.)
 ± 5.6 (syst.) ± 3.1 (lumi.)pb
 (systematically limited.)
- SM: 57.3 (+2.4/-1.6) pb

CMS-PAS-SMP-12-013

Conclusion

- Precise test of the Standard Model at TeV scale
- Significant contribution to PDFs
- Stable ground for new physics searches
- First W/Z measurement at 8 TeV: more results upcoming
- Results spanning several order of magnitudes
- General good level of agreement with NNLO theoretical calculations
- Starting to challenge NNLO predictions