B Physics potential of CMS

A. Starodumov

PSI Villigen, CH

School for Particles and Accelerators Institute for Studies in Physics and Mathematics April 20-24 2009, Isfahan, Iran

-2

1/32

Outline

- Introduction: experimental B Physics today
- CMS detector: key subsystems
- Trigger strategy: L1 trigger and HLT
- ▶ Physics channels: overview and detailed example: $B_s^0 \rightarrow \mu^+ \mu^-$
- Conclusions

イロン イロン イヨン イヨン 二日

Experimental B Physics today

- Existing facilities (B factories)
 - BABAR (SLAC PEP-II, USA) and Belle (KEK, Japan) experiments
 - Proper energy (\$\u03c4\$(4S), 10.58GeV), specialized detectors: dE/dx (DCH), DIRC, TOF etc
 - ► Huge statistics: many *B* measured, rare decays, CP violation etc
- CMS at LHC (hadron collider)
 - High energy: 14TeV, not necessary for BPhysics
 - General purpose detector: no dE/dx, TOF, performance not so outstanding for soft physics
 - ► Main goals: Higgs, SUSY, Exotica ⇒ limited trigger bandwidth for BPhysics

B Physics at hadron collider: CDF and D0 at Tevatron (Fermilab)

- properties of B_u and B_d: lifetime, mass, CP, rare decays
- ► $B_s: B_s^0 \overline{B_s^0}$ oscillations, lifetime, mass, limit on $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$
- properties of B_c , Λ_b : lifetime, mass, $\mathcal{A_{CP}}$
- Σ_b , Σ_b^* discovery: m(Σ_b^-)=5815.2±1.0(stat)±1.7(sys) MeV/ c^2

B Physics results (examples)

Motivations

- Physics:
 - $b\overline{b}$ x-section at 14(10) TeV $\simeq 500 \mu b$
 - 'New' flavors produced: B_s^0 (\simeq 20%) and B_c^{\pm} (\simeq 0.2%)
 - NP search in decay rate: mainly $B_s^0 \rightarrow \mu^+ \mu^-$
 - ▶ NP search in A_{FB} , A_{CP} , $M_{\mu^+\mu^-}$, $P_{L(T)}$: $B \to X_s \mu^+ \mu^-$ and $\Lambda_b \to \Lambda \mu^+ \mu^-$

Detector:

- ► (di-)muon low p_T trigger, precise vertex detector, efficient tracker system
- ▶ B and quarkonia $(J/Psi, \Upsilon)$ decays provide excellent calibration

Collider:

- at low luminosity phase no Higgs, but already plenty of $b\overline{b}$
- > at high luminosity, thanks to efficient (di)-muon trigger, continue BPhysics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The CMS Detector

for details see talk G.Tonelli

The Compact Muon Solenoid

- Length 22 $\rm m$, diameter 15 m, 12.5 $\rm kton$
- Magnetic field 3.8 Tesla
- Muon system
 - DT, CSC, RPC
 - $p_T > 3 \,\text{GeV/}c$
- All-silicon tracker (220 m²)
 - $|\eta| < 2.5$
 - pixel: 3 layers, 2 disks, 100x150 μm^2 pixels
 - strip tracker: 10 layers, 9 disks

A D > A B > A B > A B >

The CMS Muon System

- Three types of gaseous particle detectors for muon identification
 - Drift Tubes (DT) in the central barrel region: position and momentum measurements
 - Cathode Strip Chambers (CSC) in the end-cap region: position and momentum measurements
 - Resistive Parallel Plate Chambers (RPC) in both the barrel and end-caps: fast information for the Level-1 trigger

Muon identification efficiency

The CMS Tracker

- Silicon Strip Detector
 - 10÷14 points
 - hit resolution: 50/500 μ m in $(r \phi)/z$
- Pixel Detector
 - 3 points
 - hit resolution: 10/17 μ m in

 $(r-\phi)/z$

for details see talk M.Krammer

The CMS Trigger Strategy

- Level 1 Triggers
 - muons and calorimeters, Latency: 3.2μs,
 40 MHz → 100 kHz
- High-level Triggers (HLT)
 - fast (local) reconstruction, 100kHz \rightarrow 100Hz

B-physics triggers

- Level 1: single- or di-muon trigger 1μ : $p_T > 7(14)$ GeV/*c*,
 - $2\mu:p_T>3(7)\,\text{GeV/}c$
- HLT: exclusive and inclusive b/c triggers at ~ 5Hz partial reconstruction, displaced di-muons

Andrey Starodumov

B Physics potential of CMS

LHC start-up and CMS objectives

- 2009 10TeV Collision:

 - 'Engineering' Run \rightarrow 1 \div 5 pb $^{-1}$ Nominal luminosity (10^{28} \rightarrow 10^{31}) cm $^{-2} {\rm s}^{-1}$
 - Detector commissioned, calibration and alignment
- 2010 10TeV Collision:
 - Physics Run \rightarrow 100÷300 pb⁻¹
 - Nominal luminosity $(10^{31} \rightarrow 10^{32}) \text{ cm}^{-2} \text{s}^{-1}$
 - Detector calibrated and aligned, physics data taking
- Beauty related information
 - $N_{b\overline{b}} = 5 \times 10^8 / \text{pb}^{-1}$
 - L1 trigger: 2μ : $p_T = 3 \text{ GeV}/c$; $1\mu p_T = 3,5 \text{ GeV/c} - (\text{un})\text{ prescaled}, p_T > 7 \text{ GeV/c}, \text{ unprescaled till } 10^{32}$
- Main BPhysics goals at start-up
 - measure: m_B , τ_B , decay branching ratio for different *b*-hadron decays
 - measure: bb production x-section and production mechanisms
 - search: NP effects in rare B decays branching ratio

・ロット (雪) (日) (日) (日)

Heavy Flavor Menu

ready analysis

- Inclusive b production: differential x-sections
- Inclusive and prompt $J/\Psi(\rightarrow \mu^+\mu^-)$ production x-section
- J/Ψ vs μ : $b\overline{b}$ correlation studies, $b\overline{b}$ production mechanisms
- $B^0_s \rightarrow J/\Psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$: measurement of $\Delta \Gamma_s$
- $B^{\bar{0}}_{s}
 ightarrow \mu^{+}\mu^{-}$: FCNC rare decay, possible hint for NP
- $B_c^{\pm} \rightarrow J/\Psi \pi^{\pm} \rightarrow \mu^+ \mu^- \pi^{\pm}$: mass and lifetime of B_c
- $\tau \rightarrow 3\mu$: search for Lepton Flavor Violation

analysis in progress

- $B^{\pm} \rightarrow J/\Psi K^{\pm} \rightarrow \mu^+ \mu^- K^{\pm}$: measurement of $\sigma_{b\overline{b}}$
- $B \rightarrow D_0 \mu X$: measurement of $\sigma_{b\overline{b}}$
- $b \rightarrow J/\Psi + X \rightarrow \mu^+ \mu^- + X$: inclusive *b* production x-section and lifetime
- $B^0 \rightarrow J/\Psi K^{*0} \rightarrow \mu^+ \mu^- K^+ \pi^-$
- Quarkonia: Υ and χ_c production x-section, J/Ψ polarization
- $B \rightarrow (\phi, K^*, K_s) \mu^+ \mu^-, \Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: search for NP
- parameters assumed in the studies
 - $E_{CM} = 14 \text{ TeV}, \sigma_{b\overline{b}} = 500 \,\mu\text{b},$
 - luminosity from 3 pb^{-1} up to 10 fb^{-1}

イロン 不良 とうほう 不良 とうほ

Inclusive b production

- Measure differential *b*-jet x-section: $d\sigma/dp_T$ and $d\sigma/d\eta$
- Experimental signature: µ + b-jet
- Trigger
 - L1: single muon with $p_T > 14 \text{ GeV/}c$ ($\epsilon = 18\%$)
 - HLT: muon with p_T > 19 GeV/c + b-jet of E_T > 50 GeV (ϵ = 60%)
- Off-line Analysis
 - b-jet tagging with CSV (secondary vertex based) algorithm
 - take most energetic b-jet in event as B-particle candidate
 - apply muon tag (muon in *b*-jet)
- 1.6M b-events collected @ 1 fb⁻¹
- Key issue is data purity
 - background: c-jets, udsg-jets with real/fake μ
 - select jets with muon inside (b-jet candidates)
 - fit data with MC shapes of muon transverse momentum with respect to jet axis

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Inclusive b production

muon p_T spectrum fit: b (dash), c (dot-dash), udsg (dot)

x-section uncertainties: stat (\blacktriangle), sys (\blacksquare), total (\bullet)

- Dominant source of systematic is Jet Energy Corrections.
- Measurements could be done with 20% error in a range $p_T(B)=50 \text{ GeV/}c \div 1.2 \text{ TeV/}c$ with 10 fb⁻¹ of data

$J/\Psi(ightarrow \mu^+\mu^-)$ production x-section

- Measure J/Ψ production x-section: $d\sigma/dp_T$
- Three main production mechanisms:
 - prompt direct production
 - prompt indirect production (via χ_c , Ψ 2 etc decays)
 - non-prompt production via $b \rightarrow J/\Psi X$
- Goals of the study
 - prompt J/Ψ production mechanism: CSM, COM, else? [Color Singlet/Octet Model]
 - measure B hadron production x-section
- Puzzle in quarkonia production
 - CDF shows 50(!) times higher x-section than CSM
 - NRQCD including COM explains $d\sigma/dp_T$ but not transverse polarization
 - at LHC higher p_T and more luminosity allow for new studies
- 70k J/Ψ events collected @ 3 pb⁻¹

$J/\Psi(ightarrow \mu^+\mu^-)$ production x-section

- J/Ψ trigger selection and reconstruction:
 - L1: di-muon with *p*_T>3 GeV/*c*
 - HTL: muon p_T and $m_{J/\Psi} \pm 0.3 \, {\rm GeV}/c^2$
 - off-line: same as trigger + di-muon sec. vert.
- Sample composition:
 - background: QCD with 1 real and 1 fake muons
 - *B* fraction determined by log-likelihood fit of mass spectrum and transverse flight length *l*_{xy}
- Systematic uncertainties: ~ 15% (lumi, $\epsilon_{t,r}$)

$b\overline{b}$ production mechanisms

- Three production mechanisms:
 - Flavor Creation: both *b*-quarks in the hard interaction (HI), $\Delta \phi \simeq \pi$, balanced in p_T
 - Flavor Excitation: one *b*-quark in the HI, asymmetric *p*_T
 - Gluon Splitting: none *b*-quark in the HI, small $\Delta \phi$

Goals of the study

- critical additional test of NLO QCD
- precise determination of bb production topology
- tune MC generators for more realistic estimation of bb background for NP searches

Andrey Starodumov

$b\overline{b}$ production mechanisms

- Analysis strategy:
 - Signature: $b\overline{b}
 ightarrow J/\Psi(
 ightarrow \mu^+\mu^-)X + \mu^\pm X$
 - L1/HLT triggers: di-muon p_T >3 GeV/c
 - Signal yield measured in $\Delta \phi$ bins through unbinned maximum-likelihood to J/Ψ mass ${\rm L}_{xy}^{J/\Psi}$ and ${\rm IP}_{\mu}$
 - Unfolding $\Delta \phi (J/\Psi \mu)$ to get $\Delta \phi (b\overline{b})$
- With 50 pb^{-1} of data (few month)
 - 7500 signal events
 - $\sigma(pp \rightarrow b\overline{b}X) = 451 \pm 50 \mu b$

$B_{c}^{0} \rightarrow J/\Psi \phi \rightarrow \mu^{+} \mu^{-} K^{+} K^{-}$

Study properties of B_s system:

- Width difference of two weak eigenstates $\Delta\Gamma_s = \Gamma_H \Gamma_I$
 - SM: $\Delta\Gamma_s/\bar{\Gamma}_s \simeq 10\%$, CDF: $(\Delta\Gamma_s/\bar{\Gamma}_s \simeq 3.1 \pm 7.7_{stat})\%$ (2.8 fb⁻¹)
- Mass difference of two weak eigenstates $\Delta m_s = m_{B_s^H} m_{B_s^L}$
 - CDF: $\Delta m_s = 17.77 \pm 0.10_{stat} \pm 0.07_{svs}$ (1 fb⁻¹)
- height of the Unitarity Triangle (η) and possible hint for NP: $\phi_s^{SM} = -2\lambda^2 \eta = (3.12 \pm 0.11)^\circ$ (*CP*-violating weak phase)
- B_s decays into two vector mesons: 3 polarization amplitude
 - *CP*-even: $A_0(t)$ and $A_{||}(t)$ and *CP*-odd: $A_{||}(t)$
 - with constraint $|A|^2 = |A_0|^2 + |A_{||}| + |A_{\perp}|^2$
- Time dependent angular analysis:
 - simple example:
 - $\frac{d\Gamma(t)}{dcos\theta} \sim (|A_0(t)|^2 + |A_{||}(t)|^2)\frac{3}{8}(1 + cos^2\theta) + |A_{\perp}(t)|^2\frac{3}{4}sin^2\theta$ more information in the full three angles distribution

(日)

 $B_{c}^{0} \rightarrow J/\Psi \phi \rightarrow \mu^{+} \mu^{-} K^{+} K^{-}$

Trigger strategies:

- L1: di-muon with $p_T > 3 \text{ GeV}/c$
- HLT 1: partial (\sim 6hits) track, J/Ψ mass and vertexes reconstruction
- HLT 2: kinematic (p_T , mass) and topological (L_{xy} , $\Delta \alpha$ etc) selections
- HLT 3: ϕ and B_s reconstruction and corresponding selections

Background

- prompt J/Ψ : important in trigger, negligible after all cuts
- inclusive $b \rightarrow J/\Psi$: after all cuts $n_B/n_S \simeq 33\%$
- $B_d \rightarrow J/\Psi K^*$: after all cuts $n_B/n_S \simeq 7\%$

Off-line Analysis

- almost the same as HLT but with full detector information
- angular analysis to measure $\Delta\Gamma_s$
- ~14k events collected @ 1.3 fb⁻¹

$B_s \rightarrow J/\Psi\phi$: results with 1.3 fb⁻¹

Parameter	Input value	Result	Stat. error	Sys. error	Total error	Rel. error
$ A_0(0) ^2$	0.57	0.5823	0.0061	0.0152	0.0163	2.8%
$ A_{ }(0) ^2$	0.217	0.2130	0.0077	0.0063	0.0099	4.6%
$ A_{\perp}(0) ^2$	0.213	0.2047	0.0065	0.0099	0.0118	5.8%
Γ _s	0.712 ps ⁻¹	0.7060 ps ⁻¹	0.0080 ps ⁻¹	0.0227 ps ⁻¹	0.0240 ps ⁻¹	3.4%
$\Delta \Gamma_s$	0.142 ps ⁻¹	0.1437 ps ⁻¹	0.0255 ps ⁻¹	0.0113 ps ⁻¹	0.0279 ps ⁻¹	19%
$\Delta \Gamma_s / \overline{\Gamma}_s$	0.2	0.2036	0.0374	0.0173	0.0412	20%

- Statistical error on $\Delta\Gamma_s/\bar{\Gamma}_s$ is $\simeq 0.01$ with $10\,\text{fb}^{-1}$
- Measurements of ϕ_s with tagged analysis is under study

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三三 のへで

 $B_s^0
ightarrow \mu^+ \mu^-$

▶ Highly suppressed in SM: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ = (3.86 ± 0.15) × 10⁻⁹

Sensitive to NP:

- New particles contribute in decay diagrams
- MSSM: $\mathcal{B} \propto (\tan \beta)^6$ or 2HDM: $\mathcal{B} \propto (\tan \beta)^4$
- Constraints on masses (m_0 , $m_{1/2}$ etc) and tan β
- Current best limit (Tevatron, 2 fb⁻¹):
 - D0: $\mathcal{B} \leq 7.5 \times 10^{-8}$ at 95% C.L.
 - CDF: $\mathcal{B} \leq 4.7 \times 10^{-8}$ at 95% C.L.

(日本)(日本)(日本)

$B_s^0 ightarrow \mu^+ \mu^-$: analysis overview

Search for a very rare decay channel

- clean experimental signature
- efficient signal selection
- strong background reduction
- Background composition
 - $b\overline{b}(c\overline{c}) \rightarrow \mu^+\mu^- + X$
 - rare single B decays (peaking and non-peaking)
 - QCD 2 \rightarrow 2 (1 or 2 hadrons identified as muons)
- Background reduction
 - 2 muons consistent with one secondary vertex
 - large flight length
 - isolation of di-muon system
 - mass window

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

$B_s^0 \rightarrow \mu^+ \mu^-$: background

Sample	Generator cuts/channels	$\sigma_{\it Vis}[{\it fb}]$	$N_{\mu ID}$ (10 fb $^{-1}$)
$b\overline{b} ightarrow \mu^+ \mu^- + X$	$p_T^{\mu} > 3 \text{GeV/c}, \eta^{\mu} < 2.4$ $p_T^{\mu\mu} > 5 \text{GeV/c}, 0.3 < \Delta R(\mu\mu) < 1.8$	1.74E + 07	1.74×10^{8}
	$5 < m_{\mu\mu} < 6$ GeV/ c^2		
B _s decays	$B_s \to K^- K^+$	2.74E + 05	274
	$B_S \rightarrow \pi^- \pi^+$	9.45E + 03	3
	$B_s \to K^- \pi^+$	3.08E + 04	16
	$B_s \to K^- \mu^+ u$	2.80E + 05	2.80×10^{4}
	$B_s \to \mu^+ \mu^- \gamma$	1.29E + 01	130
B _d decays	$B_d \rightarrow \pi^- \pi^+$	8.34E + 04	21
	$B_d \rightarrow \pi^- K^+$	3.74E + 05	187
	$B_d \to \pi^- \mu^+ \nu$	1.25E + 06	6.25×10^{4}
	$B_d \rightarrow \mu^+ \mu^- \pi_0$	3.77E + 01	377
B _u decay	$B_{\mu} \rightarrow \mu^+ \mu^- \mu^+ \nu$	2.24E + 03	2.24×10^{4}
B _c decays	$B_c \rightarrow \mu^+ \mu^- \mu^+ \nu$	2.01E + 01	201
	$B_c ightarrow J/\Psi \mu^+ u$	1.89E + 03	1.89×10^{4}
Λ_b decays	$\Lambda_b \to \rho \pi^-$	4.22E + 03	1
	$\Lambda_b \rightarrow pK^-$	8.45E + 03	1
QCD hadrons	$5 < M(hh) < 6 {\rm GeV}/c^2$	2.24E + 11	1.12×10^{8}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Misidentification of hadron as muon

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-2

$B_s^0 \rightarrow \mu^+ \mu^-$: background before cuts

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

-20

$B_s^0 \rightarrow \mu^+ \mu^-$: main selections

- Muon separation: $0.3 < R_{\mu\mu} < 1.2$
- Pointing angle: $\alpha(\vec{P}_T, \vec{V}_T) < 5.7^\circ$
- Decay length: I_{xy}/σ_{xy} > 18.0
- Vertex fit quality: $\chi^2 < 1.0$
- ► Isolation: $I = \frac{p_T(B_s)}{p_T(B_s) + \sum_{trk} |p_T|} > 0.85,$ $R < 1.0, p_T > 0.9 \text{ GeV/}c$

A (10) × (10) × (10)

• Mass cut: $|m_{\mu\mu} - m_{B_s}| \le 100 \, \text{MeV}/c^2$

$B_s^0 ightarrow \mu^+ \mu^-$: background after cuts

< 17 ×

(4) (3) (4) (4) (4)

э

$B_s^0 \rightarrow \mu^+ \mu^-$: results

Results for 10 fb⁻¹

- ▶ Signal: $\varepsilon_S = 0.019 \pm 0.002_{stat}$, $n_S = 6.1 \pm 0.6_{stat} \pm 1.5_{sys}$
- Background: $\varepsilon = 2.6 \times 10^{-7}$, $n_B = (13.8 + 0.3)^{+22.3}_{-14.1}$

$$\mathcal{B}(B^0_s o \mu^+ \mu^-) \leq rac{N(n_{obs}, n_B, n_S)}{\varepsilon_{
m gen} \, \varepsilon_{
m total} \, N_{B_s}} \leq 1.4 imes 10^{-8} \ (90\% \ {
m C.L.})^*$$

* UL extracted using Bayesian approach (CDF)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三三 - のへで

$B_c^\pm ightarrow J/\Psi \pi^\pm ightarrow \mu^+ \mu^- \pi^\pm$

► B_c discovered by CDF (!)

- $M_{B_c} = (6.40 \pm 0.39 \pm 0.13) \, \text{GeV}/c^2$
- $\tau_{B_c} = (460 \pm 180 \pm 30) fs$
- M_{B_c} and τ_{B_c} measurements
 - 120 $J/\Psi\pi^{\pm}$ selected in 1 fb⁻¹
 - mass resolution $\sigma_M = 15 \,\text{MeV}/c^2$
 - lifetime error $\sigma_{\tau} = 45 fs$ (stat dominated)

LFV in $\tau \rightarrow \mu \mu \mu$

- SM lepton flavor violation is negligible: $\sim (m_{\nu_i}^2/m_W^2)^2$
- Many theories BSM allow $\mathcal{B} \sim O(10^{-10} \div 10^{-7})$
- Current experimental limits:
 - BELLE: $\mathcal{B} \le 3.2 \times 10^{-8}$, 535 fb⁻¹
 - BABAR $B \le 5.3 \times 10^{-8}$, 376 fb⁻¹
- CMS can contribute in the measurements:
 - Plenty of τ produced $\sim 10^{11}$ per 1 fb⁻¹
 - Clean experimental signature, suitable triggers

(日)

LFV in $\tau \to \mu \mu \mu$

Channel	$W \to \tau \nu$	$\gamma/Z \to \tau \tau$	$B^0 \rightarrow \tau X$	$B^{\pm} \rightarrow \tau X$	$B_{\rm S} \to \tau X$	$D_S \to \tau X$
$N_{ au}/1 \mathrm{fb}^{-1}$	1.7×10^{7}	3.2×10^{6}	4.0×10^{10}	3.8×10^{10}	$7.9 imes 10^{9}$	1.5×10^{11}

- Main background sources
 - $c\bar{c} \rightarrow D_X D_S \rightarrow \mu \nu \phi (\rightarrow \mu \mu) + X$
 - $b\bar{b} \rightarrow B_{x}B_{s} \rightarrow \mu\nu D_{s}(\rightarrow h\phi(\rightarrow \mu\mu)) + X$
- Trigger strategy
 - L1: single muon with p_T >14 GeV/c, di-muon with p_T >3 GeV/c
 - HLT: single muon with p_T >19 GeV/c, di-muon with p_T >7 GeV/c
- Expected limits for 30 fb⁻¹
 - in $W \rightarrow \tau \nu$: 3.8 \times 10⁻⁸
 - in $Z \rightarrow \tau \tau$: 3.4 × 10⁻⁷
 - in $b \rightarrow \tau X$: 2.1 \times 10⁻⁷
- Above results from 2002
- Now the study under revision

Conclusions and Outlook

Conclusions

- While designed for high-p_T physics, CMS has broad heavy flavor program
- Main features allow this program:
 - high $b\overline{b}$ event rate even at low (10³²) initial luminosity
 - efficient low p_T di-muon trigger
 - excellent tracking: momentum, mass, vertex resolution

Outlook

- More heavy flavor topics may come soon
- First results are expected in 2010