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Lecture 1 (Probability )
Probability 
Random variables, probability densities, etc.
Brief catalogue of probability densities

The Monte Carlo method

Lecture 2 (Statistics)
Statistical tests
Fisher discriminants, etc. 
Significance and goodness-of-fit tests 

Parameter estimation

Maximum likelihood and least squares

Interval estimation (setting limits)
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For each reaction we consider we will have a hypothesis
 

for the
pdf of     , e.g., 

Statistical tests (in a particle physics context)
Suppose the result of a measurement for an individual event 
is a collection of numbers

x1

 

= number of muons,

x2

 

= mean pt of jets,

x3

 

= missing energy, ...

follows some n-dimensional joint pdf, which depends on 
the type of event produced, i.e., was it 

etc.
E.g. call H0

 

the null (background) hypothesis (the event type we know already 
exists); H1

 

, H2

 

, …
 

are alternative (signal) hypotheses.
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Selecting events
Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H0

 

and H1

 

and we want to select 
those of type H1 .

Each event is a point in space.  What ‘decision boundary’
 should we use to accept/reject events as belonging to event 

type H1 ?

accept
H1

H0

Perhaps select events
with ‘cuts’:
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Other ways to select events
Or maybe use some other sort of decision boundary:

accept
H1

H0

accept
H1

H0

linear or nonlinear

How can we do this in an ‘optimal’
 

way?
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Test statistics
Construct a ‘test statistic’

 
of lower dimension (e.g. scalar)

We can work out the pdfs

Try to compactify data without losing ability to discriminate
between hypotheses.

Decision boundary is now a 
single ‘cut’

 
on t.

This effectively divides the 
sample space into two regions, 
where we accept or reject H0

 

.
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Significance level and power of a test
Probability to reject H0

 

if it is true 
(error of the 1st kind):

(significance level)

Probability to accept H0

 

if H1

 

is true
(error of the 2nd kind):

(1 −
 

β =
 

power)
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Efficiency of event selection

Probability to accept an event which
is signal (signal efficiency):

Probability to accept an event which
is background (background efficiency):
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Purity of event selection
Suppose only one background type b; overall fractions of signal
and background events are πs

 

and πb

 

(prior probabilities).

Suppose we select events with t > tcut

 

.  What is the
‘purity’

 
of our selected sample?

Here purity means the probability to be signal given that
the event was accepted.  Using Bayes’

 
theorem we find:

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.
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Constructing a test statistic
How can we select events in an ‘optimal way’?

Neyman-Pearson lemma (proof in Brandt Ch. 8) states:

To get the lowest εb

 

for a given εs

 

(highest power for a given 
significance level), choose acceptance region such that

where c is a constant which determines εs

 

.

Equivalently, optimal scalar test statistic is
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Why Neyman-Pearson doesn’t always help
The problem is that we usually don’t have explicit formulae for
the pdfs

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.
Use e.g. M bins for each of the n dimensions, total of Mn cells.

But n is potentially large, →
 

prohibitively large number of cells 
to populate with Monte Carlo data.

Compromise:  make Ansatz for form of test statistic
with fewer parameters; determine them (e.g. using MC) to 
give best discrimination between signal and background.
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Linear test statistic

Ansatz:

→
 

Fisher:  maximize

Choose the parameters a1

 

, ..., an so that the pdfs
have maximum ‘separation’.  We want:

σs σb

t

g (t) μb

large distance  between 
mean values, small widths

μs
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Fisher discriminant
Using this definition of separation gives a Fisher discriminant.

accept
H1

H0

Corresponds to a linear
decision boundary.

Equivalent to Neyman-Pearson if the signal and background 
pdfs are multivariate Gaussian with equal covariances;
otherwise not optimal, but still often a simple, practical solution.

17 Dec 2008



G. Cowan S.Paktinat ١٤

Nonlinear test statistics
The optimal decision boundary may not be a hyperplane,

→
 

nonlinear test statistic

accept
H0

H1
Multivariate statistical methods
are a Big Industry:

Neural Networks,
Support Vector Machines,
Kernel density estimation,
Boosted decision trees, ...

New software for HEP, e.g.,
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
StatPatternRecognition, I. Narsky, physics/0507143 
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Neural network example from LEP II
Signal:  e+e−

 
→ W+W−

 
(often 4 well separated hadron jets)

Background:  e+e−

 
→ qqgg  (4 less well separated hadron jets)

←
 

input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output does better...

(Garrido, Juste and Martinez, ALEPH 96-144)
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Testing significance/goodness-of-fit
Suppose hypothesis H predicts pdf 
observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 
data space represents less 
compatibility with H than 
does the point less 

compatible
with H

more 
compatible
with H

(Not unique!)

17 Dec 2008



G. Cowan S.Paktinat ١٧

p-values
Express ‘goodness-of-fit’

 
by giving the p-value for H:

p = probability, under assumption of H, to observe data with 
equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). 
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p-value example:  testing whether a coin is ‘fair’

i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding
up the probabilities for these values gives:
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The significance of an observed signal
Suppose we observe n events; these can consist of:

nb

 

events from known processes (background)
ns

 

events from a new process (signal)
If ns

 

, nb

 

are Poisson r.v.s with means s, b, then n = ns

 

+ nb
is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs

 

= 5.  Should we claim
evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

TMath::Prob

TMath::NormQuantile

E.g. Z = 5 (a ‘5 sigma effect’) means p = 2.87 ×
 

10-7
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The significance of a peak

Suppose we measure a value 
x for each event and find:

Each bin (observed) is a
Poisson r.v., means are
given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.
The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)

But... did we know where to look for the peak?

→
 

give P(n ≥
 

11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→
 

take x window several times the expected resolution

How many bins ×
 

distributions have we looked at?

→ look at a thousand of them, you’ll find a 10-3

 
effect

Did we adjust the cuts to ‘enhance’
 

the peak?

→ freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????
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When to publish
HEP folklore: claim discovery when p-value of background only 
hypothesis is  2.87 ×

 
10-7, corresponding to significance Z = 5.

This is very subjective and really should depend on the 
prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery
D0D0

 
mixing

 
~0.05

Higgs
 

~ 10-7

 
(?)

Life on Mars
 

~10−10

Astrology
 

∼10−20
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Parameter estimation
The parameters of a pdf are constants that characterize
its shape, e.g.

r.v.

Suppose we have a sample
 

of observed values:

parameter

We want to find some function of the data to estimate
 

the 
parameter(s):

←
 

estimator written with a hat

Sometimes we say ‘estimator’
 

for the function of x1

 

, ..., xn ;
‘estimate’

 
for the value of the estimator with a particular data set.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):
→

 
average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→

 
small bias & variance are

 
in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)
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An estimator for the variance

Parameter:

Estimator:

(factor of n−1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
Suppose the outcome of an experiment is:  x1

 

, ..., xn ,  which
is modeled as a sample from a joint pdf with parameter(s) θ:

Now evaluate this with the data sample obtained and regard it as
 a function of the parameter(s).  This is the likelihood function:

(xi constant)

If the xi are independent observations of x ~ f(x;θ), then,
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Maximum likelihood estimators
If the hypothesized θ is close to the true value, then we expect 
a high probability to get data like what we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian −

 
(almost) always true for 

ML in large sample limit.
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax

 

, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→
 

to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).

17 Dec 2008



G. Cowan S.Paktinat ٣٥

The method of least squares
Suppose we measure N values, y1

 

, ..., yN , 
assumed to be  independent Gaussian 
r.v.s with 

Assume known values of the control
variable x1

 

, ..., xN and known variances

The likelihood function is

We want to estimate θ, i.e., fit the curve to the data points.
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The method of least squares (2)

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum of this quantity defines the least squares estimator 

Often minimize χ2

 
numerically (e.g. program MINUIT).
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Example of least squares fit

Fit a polynomial of order p:
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Variance of LS estimators
In most cases of interest we obtain the variance in a manner
similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 
take the values of θ where

1.0
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Goodness-of-fit with least squares
The value of the χ2

 
at its minimum is a measure of the level

of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form λ(x; θ).

We can show that if the hypothesis is correct, then the statistic 
t = χ2

min

 

follows the chi-square pdf,

where the number of degrees of freedom is 

nd

 

= number of data points −
 

number of fitted parameters
17 Dec 2008



G. Cowan S.Paktinat ٤٠

Goodness-of-fit with least squares (2)
The chi-square pdf has an expectation value equal to the number 
of degrees of freedom, so if χ2

min

 

≈
 

nd

 

the fit is ‘good’.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a χ2
min

 

as high as the one
we got, or higher, if the hypothesis is correct.
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Setting limits
Frequentist intervals (limits) for a parameter s can be found by 
defining a test

 
of the hypothesized value s (do this for all s): 

Specify values of the data n that are ‘disfavoured’
 

by s
(critical region) such that P(n in critical region) ≤

 
γ

for a prespecified γ, e.g., 0.05 or 0.1.

(Because of discrete data, need inequality here.)

If n is observed in the critical region, reject the value s.

Now invert
 

the test to define a confidence interval
 

as:

set of s values that would not
 

be rejected in a test of
size

 
γ (confidence level is 1 − γ ).

The interval will cover the true value of s with probability ≥
 

1 −
 

γ.
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Setting limits
Consider again the case of finding n = ns

 

+ nb

 

events where

nb

 

events from known processes (background)
ns

 

events from a new process (signal)
are Poisson r.v.s with means s, b, and thus n = ns

 

+ nb
is also Poisson with mean = s + b.  Assume b is known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs

 

= 5 events.

→
 

set upper limit on the parameter s.

The evidence for the presence of signal events is not
statistically significant,
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Example of an upper limit
Find the hypothetical value of s such that there is a given small
probability, say, γ

 
= 0.05, to find as few events as we did or less:

Solve numerically for s = sup

 

, this gives an upper limit on s at a
confidence level

 
of 1−γ.

Example:  suppose b = 0 and we find nobs

 

= 0.  For 1−γ = 0.95,

→

The interval [0, sup

 

] is an example of a confidence interval,
designed to cover the true value of s with a probability 1 − γ.
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Meaning of a confidence interval
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Calculating Poisson parameter limits
To solve for slo

 

, sup

 

, can exploit relation to χ2

 
distribution:

Quantile of χ2

 
distribution

TMath::ChisquareQuantile

For low fluctuation of n this 
can give negative result for sup

 

; 
i.e. confidence interval is empty.

Many subtle issues here −
 

see e.g. CERN (2000) and Fermilab
(2001) confidence limit workshops and PHYSTAT conferences.
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Variance of estimators from information inequality
The information inequality

 
(RCF) sets a lower bound on the 

variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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