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G. Cowan

Outline

S.Paktinat ٢

Lecture 1 (Probability )
Probability 
Random variables, probability densities, etc.
Brief catalogue of probability densities

The Monte Carlo method

Lecture 2 (Statistics)
Statistical tests
Fisher discriminants, etc. 
Significance and goodness-of-fit tests 

Parameter estimation

Maximum likelihood and least squares

Interval estimation (setting limits)
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Data analysis in particle physics 

S.Paktinat ٣

Observe events of a certain type

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)
Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., α, GF

 

, MZ

 

, αs

 

, mH

 

, ...
Some tasks of data analysis:

Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theory are 
in agreement with the data (→ presence of New Physics?)

16 Dec 2008



G. Cowan

Dealing with uncertainty 

S.Paktinat ٤

In particle physics there are various elements of uncertainty:

theory is not deterministic
quantum mechanics

random measurement errors
present even without quantum effects

things we could know in principle but don’t
e.g. from limitations of cost, time, ...

We can quantify the uncertainty using
 

PROBABILITY
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A definition of probability 

S.Paktinat ٥

Consider a set S
 

with subsets A, B, ...

Kolmogorov
axioms (1933)

From these axioms we can derive further properties, e.g.
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Conditional probability, independence

S.Paktinat ٦

Also define conditional probability of A
 

given B
 

(with P(B) ≠
 

0):

E.g. rolling dice:

Subsets A, B
 

independent
 

if:

If A, B
 

independent,

N.B. do not confuse with disjoint subsets, i.e.,
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Interpretation of probability

S.Paktinat ٧

I.
 

Relative frequency
A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II.
 

Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•
 

Both interpretations consistent with Kolmogorov axioms.
•

 
In particle physics  frequency interpretation often most useful,

but subjective probability can provide more natural treatment of
non-repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...
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Bayes’
 

theorem

S.Paktinat ٨

From the definition of conditional probability we have,

and

but , so

Bayes’
 

theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

S.Paktinat ٩

Consider a subset B
 

of 
the sample space S,

B
 

∩
 

Ai

Ai

B

S

divided into disjoint subsets Ai
such that [i Ai

 

= S,

→

→

→ law of total probability

Bayes’
 

theorem becomes
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An example using Bayes’
 

theorem

S.Paktinat ١٠

Suppose the probability (for anyone) to have AIDS is:

← prior probabilities, i.e.,
before any test carried out

Consider an AIDS test:  result is +
 

or −

← probabilities to (in)correctly
identify an infected person

← probabilities to (in)correctly
identify an uninfected person

Suppose your result is +.  How worried should you be?
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Bayes’
 

theorem example (cont.)

S.Paktinat ١١

The probability to have AIDS given a + result is

i.e. you’re probably OK!

Your viewpoint:  my degree of belief that I have AIDS is 3.2%

Your doctor’s viewpoint:  3.2% of people like this will have AIDS

← posterior probability
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Frequentist Statistics −
 

general philosophy 

S.Paktinat ١٢

In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: ).

Probability = limiting frequency

Probabilities such as

P
 

(Higgs boson exists), 
P

 
(0.117 < αs

 

< 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.
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Bayesian Statistics −
 

general philosophy 

S.Paktinat ١٣

In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’
 

theorem has an “if-then”
 

character:  If your prior
probabilities were π (H), then

 
it says how these probabilities

should change in the light of the data.
No unique prescription for priors (subjective!)
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Random variables and probability density functions

S.Paktinat ١٤

A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

→ f(x)
 

= probability density function (pdf)

Or for discrete outcome xi

 

with e.g. i
 

= 1, 2, ... we have

x
 

must be somewhere

probability mass function

x
 

must take on one of its possible values
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Cumulative distribution function

S.Paktinat ١٥

Probability to have outcome less than or equal to x
 

is

cumulative distribution function

Alternatively define pdf with
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Histograms

S.Paktinat ١٦

pdf = histogram with

infinite data sample,
zero bin width,
normalized to unit area.
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Other types of probability densities

S.Paktinat ١٧

Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1

 

, ... xn

 

) 

Sometimes we want only pdf of some (or one) of the components

→
 

marginal pdf

→
 

joint pdf

Sometimes we want to consider some components as constant

→
 

conditional pdf

x1

 

, x2

 

independent if 
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Expectation values

S.Paktinat ١٨

Consider continuous r.v. x
 

with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity”
 

of pdf. 

For a function y(x) with pdf g(y), 

(equivalent)

Variance:

Notation:

Standard deviation:

σ ~ width of pdf, same units as x.
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Covariance and correlation

S.Paktinat ١٩

Define covariance cov[x,y] (also use matrix notation Vxy

 

) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x
 

and  y, ‘uncorrelated’

N.B. converse not always true.
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Correlation (cont.) 

S.Paktinat ٢٠16 Dec 2008
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Error propagation 

S.Paktinat ٢١

which quantify the measurement errors in the xi

 

. 

Suppose we measure a set of values 

and we have the covariances

Now consider a function

What is the variance of 

The hard way:  use joint pdf to find the pdf  

then from g(y) find V[y] = E[y2] −
 

(E[y])2. 

Often not practical, may not even be fully known.
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Error propagation (2) 

S.Paktinat ٢٢

Suppose we had 

in practice only estimates given by the measured

Expand to 1st order in a Taylor series about 

since

To find V[y] we need E[y2] and E[y].
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Error propagation (3)

S.Paktinat ٢٣

Putting the ingredients together gives the variance of
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Error propagation (4)

S.Paktinat ٢٤

If the xi

 

are uncorrelated, i.e., then this becomes

Similar for a set of m
 

functions 

or in matrix notation where
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Error propagation (5)

S.Paktinat ٢٥

The ‘error propagation’
 

formulae tell us the 
covariances of a set of functions

in terms of 
the covariances of the original variables. 

Limitations:  exact only if linear.
Approximation breaks down if function 
nonlinear over a region comparable
in size to the σi

 

.

N.B.  We have said nothing about the exact pdf of the xi

 

,
e.g., it doesn’t have to be Gaussian.

x

y(x)

σx

σy

xσx

?

y(x)
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Error propagation −
 

special cases

S.Paktinat ٢٦

→

→

That is, if the xi

 

are uncorrelated:
add errors quadratically for the sum (or difference),
add relative errors quadratically for product (or ratio). 

But correlations can change this completely...
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Error propagation −
 

special cases (2)

S.Paktinat ٢٧

Consider with

Now suppose ρ = 1.  Then

i.e. for 100% correlation, error in difference → 0.
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Some distributions
Distribution/pdf

 
Example use in HEP

Binomial
 

Branching ratio
Multinomial

 
Histogram with fixed N

Poisson
 

Number of events found
Uniform

 
Monte Carlo method

Exponential
 

Decay time
Gaussian

 
Measurement error

Chi-square
 

Goodness-of-fit
Cauchy Mass of resonance
Landau

 
Ionization energy loss
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Binomial distribution
Consider N

 
independent experiments (Bernoulli trials):

outcome of each is ‘success’
 

or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n
 

= number of successes (0 ≤
 

n
 

≤
 

N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’
 

is

But order not important; there are

ways (permutations) to get n
 

successes in N
 

trials, total 
probability for n

 
is sum of probabilities for each permutation.

16 Dec 2008



G. Cowan S.Paktinat ٣٠

Binomial distribution  (2)
The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)
Binomial distribution for several values of the parameters:

Example:  observe N
 

decays of W±,  the number n
 

of which are 
W→μν

 
is a binomial r.v., p

 
= branching ratio.
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Multinomial distribution
Like binomial but now m

 
outcomes instead of two, probabilities are

For N
 

trials we want the probability to obtain:

n1

 

of outcome 1,
n2

 

of outcome 2,
…

nm

 

of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)
Now consider outcome i

 
as ‘success’, all others as ‘failure’.

→ all ni

 

individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m
 

bins, N
 

total entries, all entries independent.
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Poisson distribution
Consider binomial n

 
in the limit

→ n
 

follows the Poisson distribution:

Example:  number of scattering events
n

 
with cross section σ found for a fixed

integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x

 
with −∞

 
< x < ∞

 
.  Uniform pdf is:

N.B.  For any r.v. x
 

with cumulative distribution F(x),
y

 
= F(x) is uniform in [0,1].

Example:  for π0

 
→ γγ, Eγ

 

is uniform in [Emin

 

, Emax

 

], with
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Exponential distribution
The exponential pdf for the continuous r.v. x

 
is defined by:

Example:  proper decay time t
 

of an unstable particle

(τ = mean lifetime)

Lack of memory (unique to exponential):
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Gaussian distribution
The Gaussian (normal) pdf for a continuous r.v. x

 
is defined by:

Special case: μ = 0, σ2

 
= 1   (‘standard Gaussian’):

(N.B. often μ, σ2

 
denote

mean, variance of any
r.v., not only Gaussian.)

If y
 

~ Gaussian with μ, σ2, then  x
 

= (y
 

−
 

μ) /σ follows ϕ (x).
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Gaussian pdf and the Central Limit Theorem
The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it.  This follows from the Central Limit Theorem:

For n
 

independent r.v.s xi

 

with finite variances σi
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s.

In the limit n
 

→∞, y
 

is a Gaussian r.v. with
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Central Limit Theorem (2)
The CLT can be proved using characteristic functions (Fourier
transforms), see, e.g., Statistical Data Analysis (By. Cowan) Chapter 10.

Good example:  velocity component vx

 

of air molecules.

OK example:  total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin
gas layer.  (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)

For finite n, the theorem is approximately valid to the
extent that the fluctuation of  the sum is not dominated by
one (or few) terms. 

Beware of measurement errors with non-Gaussian tails.
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Multivariate Gaussian distribution
Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n
 

= 2 this is

where ρ = cov[x1

 

, x2

 

]/(σ1

 

σ2

 

) is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z

 
(z

 
≥

 
0) is defined by

n
 

= 1, 2, ... =  number of ‘degrees of
freedom’

 
(dof)

For independent Gaussian xi

 

, i
 

= 1, ..., n, means μi

 

, variances σi
2,

follows χ2

 
pdf with n

 
dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x

 
is defined by

(Γ
 

= 2, x0

 

= 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] →∞.

x0

 

= mode (most probable value)

Γ
 

= full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ
 

= decay rate (inverse of mean lifetime)
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Landau distribution
For a charged particle with β = v

 
/c

 
traversing a layer of matter

of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ −

 

+ −

−

 

+ −

 

+
β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’
→

 
all moments ∞

Mode (most probable 
value) sensitive to β ,

→
 

particle i.d.
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What it is:  a numerical technique for calculating probabilities
and related quantities using sequences of random numbers.

The usual steps:

(1)
 

Generate sequence r1

 

, r2

 

, ..., rm

 

uniform in [0, 1].

(2)
 

Use this to produce another sequence x1

 

, x2

 

, ..., xn
distributed according to some pdf  f

 
(x)  in which

we’re interested (x
 

can be a vector).

(3)
 

Use the x
 

values to estimate some property of  f
 

(x), e.g.,
fraction of x

 
values with a

 
< x

 
< b

 
gives

→
 

MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
→

 
use for testing statistical procedures

The Monte Carlo method
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Random number generators
Goal:  generate uniformly distributed values in [0, 1].

Toss coin for e.g. 32 bit number... (too tiring).
→

 
‘random number generator’

= computer algorithm to generate r1

 

, r2

 

, ..., rn

 

.

Example:  multiplicative linear congruential generator (MLCG)
ni+1

 

= (a ni

 

) mod m
 

,    where
ni

 

= integer
a

 
= multiplier

m
 

= modulus
n0

 

= seed (initial value)

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2.
This rule produces a sequence of numbers n0

 

, n1

 

, ...
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Random number generators  (2)
The sequence is (unfortunately) periodic!

Example (see Brandt Ch 4):  a
 

= 3, m
 

= 7, n0

 

= 1

←
 

sequence repeats

Choose a, m
 

to obtain long period (maximum = m
 

−
 

1); m
 

usually 
close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.
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Random number generators  (3)
are in [0, 1] but are they ‘random’?

Choose a, m
 

so that the ri

 

pass various tests of randomness:
uniform distribution in [0, 1],
all values independent (no correlations between pairs),

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

a
 

= 40692
m

 
= 2147483399

Far better algorithms available, e.g. TRandom3, period

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4
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The transformation method
Given r1

 

, r2

 

,..., rn

 

uniform in [0, 1], find x1

 

, x2

 

,..., xn
that follow  f

 
(x) by finding a suitable transformation  x

 
(r).

Require:

i.e.

That is,       set and solve for  x
 

(r).
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Example of the transformation method

Exponential pdf:

Set and solve for  x
 

(r).

→ works too.)
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The acceptance-rejection method

Enclose the pdf in a box:

(1)
 

Generate a random number x, uniform in [xmin

 

, xmax

 

], i.e.
r1

 

is uniform in [0,1].

(2)
 

Generate a 2nd independent random number u
 

uniformly
distributed between 0 and  fmax

 

, i.e.
(3)

 
If u

 
<  f

 
(x), then accept x.  If not, reject x

 
and repeat.
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Example with acceptance-rejection method

If dot below curve, use 
x

 
value in histogram.
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Monte Carlo event generators

Simple example:  e+e−

 
→ μ+μ−

Generate cosθ and φ:

Less simple:  ‘event generators’
 

for a variety of reactions: 
e+e-

 
→ μ+μ−, hadrons, ...

pp → hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, i.e., for each event we get a list of
generated particles and their momentum vectors, types, etc.
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A simulated event

PYTHIA Monte Carlo
pp → gluino-gluino

16 Dec 2008



G. Cowan S.Paktinat ٥٥

Monte Carlo detector simulation
Takes as input the particle list and momenta

 
from generator.

Simulates detector response:
multiple Coulomb scattering (generate scattering angle),
particle decays (generate lifetime),
ionization energy loss (generate Δ),
electromagnetic, hadronic

 
showers,

production of signals, electronics response, ...

Output = simulated raw data →
 

input to reconstruction software:
track finding, fitting, etc. 

Predict what you should see at ‘detector level’
 

given a certain 
hypothesis for ‘generator level’.  Compare with the real data.

Estimate ‘efficiencies’
 

= #events found / # events generated.

Programming package:  GEANT
16 Dec 2008
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