Steristical Methods for High Enargy Physics Probability

Sacid Pabtinat
School of Particles and accelerators
IPM, Tehran

Third National Workshop on
 Detectors and Calculation Methods in Particle Physics

Azar 26-28, 1387

Outline

Lecture 1 (Probability)
Probability
Random variables, probability densities, etc. Brief catalogue of probability densities

The Monte Carlo method
Lecture 2 (Statistics)
Statistical tests
Fisher discriminants, etc.
Significance and goodness-of-fit tests
Parameter estimation
Maximum likelihood and least squares
Interval estimation (setting limits)

Data analysis in particle physics

Observe events of a certain type

Measure characteristics of each event (particle momenta, number of muons, energy of jets,...)
Theories (e.g. SM) predict distributions of these properties up to free parameters, e.g., $\alpha, G_{\mathrm{F}}, M_{\mathrm{Z}}, \alpha_{\mathrm{s}}, m_{\mathrm{H}}, \ldots$
Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theory are in agreement with the data (\rightarrow presence of New Physics?)

Dealing with uncertainty

In particle physics there are various elements of uncertainty:
theory is not deterministic quantum mechanics

random measurement errors present even without quantum effects things we could know in principle but don't e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY

A definition of probability

Consider a set S with subsets A, B, \ldots

$$
\begin{aligned}
& \text { For all } A \subset S, P(A) \geq 0 \\
& \qquad P(S)=1 \\
& \text { If } A \cap B=\emptyset, P(A \cup B)=P(A)+P(B)
\end{aligned}
$$

Kolmogorov axioms (1933)

From these axioms we can derive further properties, e.g.

$$
\begin{aligned}
& P(\bar{A})=1-P(A) \\
& P(A \cup \bar{A})=1 \\
& P(\emptyset)=0 \\
& \text { if } A \subset B \text {, then } P(A) \leq P(B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Conditional probability, independence

Also define conditional probability of A given B (with $P(B) \neq 0)$:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

E.g. rolling dice: $P(n<3 \mid n$ even $)=\frac{P((n<3) \cap n \text { even })}{P(\text { even })}=\frac{1 / 6}{3 / 6}=\frac{1}{3}$

Subsets A, B independent if: $\quad P(A \cap B)=P(A) P(B)$
If A, B independent, $P(A \mid B)=\frac{P(A) P(B)}{P(B)}=P(A)$
N.B. do not confuse with disjoint subsets, i.e., $A \cap B=\emptyset$

Interpretation of probability

I. Relative frequency
A, B, \ldots are outcomes of a repeatable experiment

$$
P(A)=\lim _{n \rightarrow \infty} \frac{\text { times outcome is } A}{n}
$$

cf. quantum mechanics, particle scattering, radioactive decay...
II. Subjective probability
A, B, \ldots are hypotheses (statements that are true or false)

$$
P(A)=\text { degree of belief that } A \text { is true }
$$

- Both interpretations consistent with Kolmogorov axioms.
- In particle physics frequency interpretation often most useful, but subjective probability can provide more natural treatment of non-repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists,...

Bayes' theorem

From the definition of conditional probability we have,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { and } P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

but $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

First published (posthumously) by the Reverend Thomas Bayes (1702-1761)

An essay towards solving a problem in the
Bayes' theorem doctrine of chances, Philos. Trans. R. Soc. 53 (1763) 370; reprinted in Biometrika, 45 (1958) 293.

The law of total probability

$\rightarrow B=B \cap S=B \cap\left(\cup_{i} A_{i}\right)=\cup_{i}\left(B \cap A_{i}\right), \quad B \cap A_{i}$
$\rightarrow P(B)=P\left(\cup_{i}\left(B \cap A_{i}\right)\right)=\sum_{i} P\left(B \cap A_{i}\right)$
$\rightarrow P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \quad$ law of total probability

Bayes' theorem becomes

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

An example using Bayes' theorem

Suppose the probability (for anyone) to have AIDS is:

$$
\begin{aligned}
& P(\text { AIDS })=0.001 \\
& P(\text { no AIDS })=0.999
\end{aligned}
$$

\leftarrow prior probabilities, i.e., before any test carried out

Consider an AIDS test: result is + or -

$$
\begin{aligned}
& P(+\mid \text { AIDS })=0.98 \\
& P(-\mid \text { AIDS })=0.02 \\
& P(+\mid \text { no AIDS })=0.03 \\
& P(-\mid \text { no AIDS })=0.97
\end{aligned}
$$

\leftarrow probabilities to (in)correctly identify an infected person
\leftarrow probabilities to (in)correctly identify an uninfected person

Suppose your result is + . How worried should you be?

Bayes' theorem example (cont.)

The probability to have AIDS given $a+$ result is

$$
\begin{aligned}
P(\mathrm{AIDS} \mid+) & =\frac{P(+\mid \mathrm{AIDS}) P(\mathrm{AIDS})}{P(+\mid \mathrm{AIDS}) P(\mathrm{AIDS})+P(+\mid \mathrm{no} \text { AIDS }) P(\text { no AIDS })} \\
& =\frac{0.98 \times 0.001}{0.98 \times 0.001+0.03 \times 0.999} \\
& =0.032 \quad \leftarrow \text { posterior probability }
\end{aligned}
$$

i.e. you're probably OK!

Your viewpoint: my degree of belief that I have AIDS is 3.2%
Your doctor's viewpoint: 3.2% of people like this will have AIDS

Frequentist Statistics - general philosophy

In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations (shorthand: \vec{x}).

Probability = limiting frequency

Probabilities such as

$$
\begin{aligned}
& P(\text { Higgs boson exists }), \\
& P\left(0.117<\alpha_{\mathrm{s}}<0.121\right),
\end{aligned}
$$

etc. are either 0 or 1 , but we don't know which.
The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations.

The preferred theories (models, hypotheses, ...) are those for which our observations would be considered 'usual'.

Bayesian Statistics - general philosophy

In Bayesian statistics, use subjective probability for hypotheses:
probability of the data assuming hypothesis H (the likelihood)
prior probability, i.e., before seeing the data

$$
P(H \mid \vec{x})=\frac{P(\vec{x} \mid H) \pi(H)}{\int P(\vec{x} \mid H) \pi(H) d H}
$$

posterior probability, i.e., after seeing the data
normalization involves sum over all possible hypotheses

Bayes' theorem has an "if-then" character: If your prior probabilities were $\pi(H)$, then it says how these probabilities should change in the light of the data.

No unique prescription for priors (subjective!)

Random variables and probability density functions

A random variable is a numerical characteristic assigned to an element of the sample space; can be discrete or continuous.
Suppose outcome of experiment is continuous value x

$$
P(x \text { found in }[x, x+d x])=f(x) d x
$$

$\rightarrow f(x)=$ probability density function (pdf)

$$
\int_{-\infty}^{\infty} f(x) d x=1 \quad x \text { must be somewhere }
$$

Or for discrete outcome x_{i} with e.g. $i=1,2, \ldots$ we have

$$
\begin{aligned}
& P\left(x_{i}\right)=p_{i} \\
& \sum_{i} P\left(x_{i}\right)=1
\end{aligned}
$$

probability mass function
x must take on one of its possible values

Cumulative distribution function

Probability to have outcome less than or equal to x is

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime} \equiv F(x) \quad \text { cumulative distribution function }
$$

Alternatively define pdf with $f(x)=\frac{\partial F(x)}{\partial x}$

Histograms

$\mathrm{pdf}=$ histogram with infinite data sample, zero bin width, normalized to unit area.
$f(x)=\frac{N(x)}{n \Delta x}$
$n=$ number of entries
$\Delta x=$ bin width

Other types of probability densities

Outcome of experiment characterized by several values, e.g. an n-component vector, $\left(x_{1}, \ldots x_{n}\right)$
\rightarrow joint pdf $f\left(x_{1}, \ldots, x_{n}\right)$

Sometimes we want only pdf of some (or one) of the components \rightarrow marginal pdf $f_{1}\left(x_{1}\right)=\int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}$
x_{1}, x_{2} independent if $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$

Sometimes we want to consider some components as constant
\rightarrow conditional pdf $g\left(x_{1} \mid x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{2}\right)}$

Expectation values

Consider continuous r.v. x with pdf $f(x)$.
Define expectation (mean) value as $E[x]=\int x f(x) d x$
Notation (often): $E[x]=\mu \quad \sim$ "centre of gravity" of pdf.
For a function $y(x)$ with $\operatorname{pdf} g(y)$,

$$
E[y]=\int y g(y) d y=\int y(x) f(x) d x
$$

(equivalent)
Variance: $\quad V[x]=E\left[x^{2}\right]-\mu^{2}=E\left[(x-\mu)^{2}\right]$
Notation: $V[x]=\sigma^{2}$
Standard deviation: $\sigma=\sqrt{\sigma^{2}}$
$\sigma \sim$ width of pdf, same units as x.

Covariance and correlation

Define covariance $\operatorname{cov}[x, y]$ (also use matrix notation $V_{x y}$) as

$$
\operatorname{cov}[x, y]=E[x y]-\mu_{x} \mu_{y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]
$$

Correlation coefficient (dimensionless) defined as

$$
\rho_{x y}=\frac{\operatorname{cov}[x, y]}{\sigma_{x} \sigma_{y}}
$$

If x, y, independent, i.e., $f(x, y)=f_{x}(x) f_{y}(y)$, then

$$
\begin{gathered}
E[x y]=\iint x y f(x, y) d x d y=\mu_{x} \mu_{y} \\
\rightarrow \operatorname{cov}[x, y]=0 \quad x \text { and } y, \text { 'uncorrelated' }
\end{gathered}
$$

N.B. converse not always true.

Correlation (cont.)

$$
\rho=-0.75
$$

$\rho=0.25$

Error propagation

Suppose we measure a set of values $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and we have the covariances $V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]$ which quantify the measurement errors in the x_{i}. Now consider a function $y(\vec{x})$. What is the variance of $y(\vec{x})$?

The hard way: use joint pdf $f(\vec{x})$ to find the pdf $g(y)$, then from $g(y)$ find $V[y]=E\left[y^{2}\right]-(E[y])^{2}$.

Often not practical, $f(\vec{x})$ may not even be fully known.

Error propagation (2)

Suppose we had $\vec{\mu}=E[\vec{x}]$ in practice only estimates given by the measured \vec{x}

Expand $y(\vec{x})$ to 1 st order in a Taylor series about $\vec{\mu}$

$$
y(\vec{x}) \approx y(\vec{\mu})+\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)
$$

To find $V[y]$ we need $E\left[y^{2}\right]$ and $E[y]$.

$$
E[y(\vec{x})] \approx y(\vec{\mu}) \text { since } E\left[x_{i}-\mu_{i}\right]=0
$$

Error propagation (3)

$$
\begin{aligned}
& E\left[y^{2}(\vec{x})\right] \approx y^{2}(\vec{\mu})+2 y(\vec{\mu}) \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} E\left[x_{i}-\mu_{i}\right] \\
& \quad+E\left[\left(\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)\right)\left(\sum_{j=1}^{n}\left[\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}\left(x_{j}-\mu_{j}\right)\right)\right] \\
& \quad=y^{2}(\vec{\mu})+\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
\end{aligned}
$$

Putting the ingredients together gives the variance of $y(\vec{x})$

$$
\sigma_{y}^{2} \approx \sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

Error propagation (4)

If the x_{i} are uncorrelated, i.e., $V_{i j}=\sigma_{i}^{2} \delta_{i j}$, then this becomes

$$
\sigma_{y}^{2} \approx \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}^{2} V_{i j}
$$

Similar for a set of m functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$

$$
U_{k l}=\operatorname{cov}\left[y_{k}, y_{l}\right] \approx \sum_{i, j=1}^{n}\left[\frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

or in matrix notation $U=A V A^{T}$, where

$$
A_{i j}=\left[\frac{\partial y_{i}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}
$$

Error propagation (5)

The 'error propagation' formulae tell us the covariances of a set of functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$ in terms of the covariances of the original variables.

N.B. We have said nothing about the exact pdf of the x_{i}, e.g., it doesn't have to be Gaussian.

Error propagation - special cases

$$
\begin{array}{ll}
y=x_{1}+x_{2} & \rightarrow \sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \operatorname{cov}\left[x_{1}, x_{2}\right] \\
y=x_{1} x_{2} & \rightarrow \frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}+2 \frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{x_{1} x_{2}}
\end{array}
$$

That is, if the x_{i} are uncorrelated:
add errors quadratically for the sum (or difference), add relative errors quadratically for product (or ratio).

But correlations can change this completely...

Error propagation - special cases (2)

Consider $y=x_{1}-x_{2}$ with

$$
\begin{gathered}
\mu_{1}=\mu_{2}=10, \quad \sigma_{1}=\sigma_{2}=1, \quad \rho=\frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{\sigma_{1} \sigma_{2}}=0 . \\
V[y]=1^{2}+1^{2}=2, \rightarrow \sigma_{y}=1.4
\end{gathered}
$$

Now suppose $\rho=1$. Then

$$
V[y]=1^{2}+1^{2}-2=0, \rightarrow \sigma_{y}=0
$$

i.e. for 100% correlation, error in difference $\rightarrow 0$.

Some distributions

Distribution/pdf	Example use in HEP
Binomial	Branching ratio
Multinomial	Histogram with fixed N
Poisson	Number of events found
Uniform	Monte Carlo method
Exponential	Decay time
Gaussian	Measurement error
Chi-square	Goodness-of-fit
Cauchy	Mass of resonance
Landau	Ionization energy loss

Binomial distribution

Consider N independent experiments (Bernoulli trials): outcome of each is 'success' or 'failure', probability of success on any given trial is p.

Define discrete r.v. $n=$ number of successes $(0 \leq n \leq N)$.
Probability of a specific outcome (in order), e.g. 'ssfff' is

$$
p p(1-p) p(1-p)=p^{n}(1-p)^{N-n}
$$

But order not important; there are $\frac{N!}{n!(N-n)!}$
ways (permutations) to get n successes in N trials, total probability for n is sum of probabilities for each permutation.

Binomial distribution (2)

The binomial distribution is therefore

$$
f(n ; N, p)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}
$$

random
parameters
variable
For the expectation value and variance we find:

$$
\begin{aligned}
& E[n]=\sum_{n=0}^{N} n f(n ; N, p)=N p \\
& V[n]=E\left[n^{2}\right]-(E[n])^{2}=N p(1-p)
\end{aligned}
$$

Binomial distribution (3)

Binomial distribution for several values of the parameters:

Example: observe N decays of $\mathrm{W}^{ \pm}$, the number n of which are $\mathrm{W} \rightarrow \mu \nu$ is a binomial r.v., $p=$ branching ratio.

Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

$$
\vec{p}=\left(p_{1}, \ldots, p_{m}\right), \quad \text { with } \sum_{i=1}^{m} p_{i}=1
$$

For N trials we want the probability to obtain:

$$
\begin{aligned}
& n_{1} \text { of outcome } 1, \\
& n_{2} \text { of outcome } 2,
\end{aligned}
$$

n_{m} of outcome m.
This is the multinomial distribution for $\vec{n}=\left(n_{1}, \ldots, n_{m}\right)$

$$
f(\vec{n} ; N, \vec{p})=\frac{N!}{n_{1}!n_{2}!\cdots n_{m}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{m}^{n_{m}}
$$

Multinomial distribution (2)

Now consider outcome i as 'success', all others as 'failure'.
\rightarrow all n_{i} individually binomial with parameters N, p_{i}

$$
E\left[n_{i}\right]=N p_{i}, \quad V\left[n_{i}\right]=N p_{i}\left(1-p_{i}\right) \quad \text { for all } i
$$

One can also find the covariance to be

$$
V_{i j}=N p_{i}\left(\delta_{i j}-p_{j}\right)
$$

Example: $\vec{n}=\left(n_{1}, \ldots, n_{m}\right)$ represents a histogram with m bins, N total entries, all entries independent.

Poisson distribution

Consider binomial n in the limit

$$
N \rightarrow \infty, \quad p \rightarrow 0, \quad E[n]=N p \rightarrow \nu
$$

$\rightarrow n$ follows the Poisson distribution:

$$
\begin{aligned}
& f(n ; \nu)=\frac{\nu^{n}}{n!} e^{-\nu} \quad(n \geq 0) \\
& E[n]=\nu, \quad V[n]=\nu
\end{aligned}
$$

Example: number of scattering events n with cross section σ found for a fixed integrated luminosity, with $\nu=\sigma \int L d t$.

Uniform distribution

Consider a continuous r.v. x with $-\infty<\mathrm{x}<\infty$. Uniform pdf is:

$$
\begin{aligned}
& f(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta-\alpha} & \alpha \leq x \leq \beta \\
0 & \text { otherwise }\end{cases} \\
& E[x]=\frac{1}{2}(\alpha+\beta) \\
& V[x]=\frac{1}{12}(\beta-\alpha)
\end{aligned}
$$

N.B. For any r.v. x with cumulative distribution $F(x)$, $y=F(x)$ is uniform in $[0,1]$.

Example: for $\pi^{0} \rightarrow \gamma \gamma, E_{\gamma}$ is uniform in $\left[E_{\min }, E_{\max }\right.$], with

$$
E_{\min }=\frac{1}{2} E_{\pi}(1-\beta), \quad E_{\max }=\frac{1}{2} E_{\pi}(1+\beta)
$$

Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

$$
\begin{aligned}
f(x ; \xi) & = \begin{cases}\frac{1}{\xi} e^{-x / \xi} & x \geq 0 \\
0 & \text { otherwise }\end{cases} \\
E[x] & =\xi \\
V[x] & =\xi^{2}
\end{aligned}
$$

Example: proper decay time t of an unstable particle

$$
f(t ; \tau)=\frac{1}{\tau} e^{-t / \tau} \quad(\tau=\text { mean lifetime })
$$

Lack of memory (unique to exponential): $f\left(t-t_{0} \mid t \geq t_{0}\right)=f(t)$

Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:
$f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
$E[x]=\mu \quad \begin{aligned} & \text { (N.B. often } \mu, \sigma^{2} \text { denote } \\ & \text { mean, variance of any }\end{aligned}$
$V[x]=\sigma^{2} \quad$ r.v., not only Gaussian.)
Special case: $\mu=0, \sigma^{2}=1$ ('standard Gaussian'):

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \Phi(x)=\int_{-\infty}^{x} \varphi\left(x^{\prime}\right) d x^{\prime}
$$

If $y \sim$ Gaussian with μ, σ^{2}, then $x=(y-\mu) / \sigma$ follows $\varphi(x)$.

Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the Central Limit Theorem:

For n independent r.v.s x_{i} with finite variances σ_{i}^{2}, otherwise arbitrary pdfs, consider the sum

$$
y=\sum_{i=1}^{n} x_{i}
$$

In the limit $n \rightarrow \infty, y$ is a Gaussian r.v. with

$$
E[y]=\sum_{i=1}^{n} \mu_{i} \quad V[y]=\sum_{i=1}^{n} \sigma_{i}^{2}
$$

Measurement errors are often the sum of many contributions, so frequently measured values can be treated as Gaussian r.v.s.

Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier transforms), see, e.g., Statistical Data Analysis (By. Cowan) Chapter 10.

For finite n, the theorem is approximately valid to the extent that the fluctuation of the sum is not dominated by one (or few) terms.

Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v_{x} of air molecules.
OK example: total deflection due to multiple Coulomb scattering. (Rare large angle deflections give non-Gaussian tail.)
Bad example: energy loss of charged particle traversing thin gas layer. (Rare collisions make up large fraction of energy loss, cf. Landau pdf.)

Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
f(\vec{x} ; \vec{\mu}, V)=\frac{1}{(2 \pi)^{n / 2}|V|^{1 / 2}} \exp \left[-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} V^{-1}(\vec{x}-\vec{\mu})\right]
$$

$\vec{x}, \vec{\mu}$ are column vectors, $\vec{x}^{T}, \vec{\mu}^{T}$ are transpose (row) vectors,

$$
E\left[x_{i}\right]=\mu_{i}, \quad \operatorname{cov}\left[x_{i}, x_{j}\right]=V_{i j} .
$$

For $n=2$ this is

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right]\right\}
\end{aligned}
$$

where $\rho=\operatorname{cov}\left[x_{1}, x_{2}\right] /\left(\sigma_{1} \sigma_{2}\right)$ is the correlation coefficient.

Chi-square $\left(\chi^{2}\right)$ distribution

The chi-square pdf for the continuous r.v. $z(z \geq 0)$ is defined by

$$
\begin{aligned}
& f(z ; n)=\frac{1}{2^{n / 2} \Gamma(n / 2)} z^{n / 2-1} e^{-z / 2} \\
& n=1,2, \ldots=\begin{array}{l}
\text { number of ‘degrees of } \\
\text { freedom’ (dof) }
\end{array} \\
& E[z]=n, \quad V[z]=2 n .
\end{aligned}
$$

For independent Gaussian $x_{i}, i=1, \ldots, n$, means μ_{i}, variances σ_{i}^{2},

$$
z=\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}} \quad \text { follows } \chi^{2} \text { pdf with } n \text { dof. }
$$

Example: goodness-of-fit test variable especially in conjunction with method of least squares.

Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

$$
f\left(x ;\left\ulcorner, x_{0}\right)=\frac{1}{\pi} \frac{\Gamma / 2}{\Gamma^{2} / 4+\left(x-x_{0}\right)^{2}}\right.
$$

$$
\left(\Gamma=2, x_{0}=0\right. \text { is the Cauchy pdf.) }
$$

$E[x]$ not well defined, $V[x] \rightarrow \infty$.
$x_{0}=$ mode (most probable value)
$\Gamma=$ full width at half maximum

Example: mass of resonance particle, e.g. $\rho, \mathrm{K}^{*}, \phi^{0}, \ldots$
$\Gamma=$ decay rate (inverse of mean lifetime)

Landau distribution

For a charged particle with $\beta=v / c$ traversing a layer of matter of thickness d, the energy loss Δ follows the Landau pdf:

$$
\begin{aligned}
& f(\Delta ; \beta)=\frac{1}{\xi} \phi(\lambda), \\
& \phi(\lambda)=\frac{1}{\pi} \int_{0}^{\infty} \exp (-u \ln u-\lambda u) \sin \pi u d u, \\
& \lambda=\frac{1}{\xi}\left[\Delta-\xi\left(\ln \frac{\xi}{\epsilon^{\prime}}+1-\gamma_{\mathrm{E}}\right)\right], \\
& \xi=\frac{2 \pi N_{\mathrm{A}} e^{4} z^{2} \rho \sum Z}{m_{\mathrm{e}} c^{2} \sum A} \frac{d}{\beta^{2}}, \quad \epsilon^{\prime}=\frac{I^{2} \exp \beta^{2}}{2 m_{\mathrm{e}} c^{2} \beta^{2} \gamma^{2}} .
\end{aligned}
$$

L. Landau, J. Phys. USSR 8 (1944) 201; see also W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

Landau distribution (2)

Long 'Landau tail'
\rightarrow all moments ∞

Mode (most probable value) sensitive to β,
\rightarrow particle i.d.

The Monte Carlo method

What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.
The usual steps:
(1) Generate sequence $r_{1}, r_{2}, \ldots, r_{m}$ uniform in $[0,1]$.
(2) Use this to produce another sequence $x_{1}, x_{2}, \ldots, x_{n}$
 distributed according to some pdf $f(x)$ in which we're interested (x can be a vector).
(3) Use the x values to estimate some property of $f(x)$, e.g., fraction of x values with $a<x<b$ gives $\int_{a}^{b} f(x) d x$.
\rightarrow MC calculation = integration (at least formally)
MC generated values $=$ 'simulated data'
\rightarrow use for testing statistical procedures

Random number generators

Goal: generate uniformly distributed values in $[0,1]$.
Toss coin for e.g. 32 bit number... (too tiring).
\rightarrow 'random number generator'
$=$ computer algorithm to generate $r_{1}, r_{2}, \ldots, r_{n}$.
Example: multiplicative linear congruential generator (MLCG)

$$
\begin{aligned}
& n_{i+1}=\left(a n_{i}\right) \bmod m, \quad \text { where } \\
& n_{i}=\text { integer } \\
& a=\text { multiplier } \\
& m=\text { modulus } \\
& \left.n_{0}=\text { seed (initial value }\right)
\end{aligned}
$$

N.B. $\bmod =$ modulus (remainder), e.g. $27 \bmod 5=2$.

This rule produces a sequence of numbers n_{0}, n_{1}, \ldots

Random number generators (2)

The sequence is (unfortunately) periodic!
Example (see Brandt Ch 4): $a=3, m=7, n_{0}=1$

$$
\begin{aligned}
& n_{1}=(3 \cdot 1) \bmod 7=3 \\
& n_{2}=(3 \cdot 3) \bmod 7=2 \\
& n_{3}=(3 \cdot 2) \bmod 7=6 \\
& n_{4}=(3 \cdot 6) \bmod 7=4 \\
& n_{5}=(3 \cdot 4) \bmod 7=5 \\
& n_{6}=(3 \cdot 5) \bmod 7=1 \quad \leftarrow \text { sequence repeats }
\end{aligned}
$$

Choose a, m to obtain long period (maximum $=m-1$); m usually close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.

Random number generators (3)

 $r_{i}=n_{i} / m$ are in $[0,1]$ but are they 'random'?Choose a, m so that the r_{i} pass various tests of randomness: uniform distribution in $[0,1]$,
all values independent (no correlations between pairs),
e.g. L'Ecuyer, Commun. ACM 31 (1988) 742 suggests

$$
\begin{aligned}
& a=40692 \\
& m=2147483399
\end{aligned}
$$

Far better algorithms available, e.g. TRandom3, period $2^{19937}-1$. See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4

The transformation method

Given $r_{1}, r_{2}, \ldots, r_{n}$ uniform in $[0,1]$, find $x_{1}, x_{2}, \ldots, x_{n}$ that follow $f(x)$ by finding a suitable transformation $x(r)$.

Require: $P\left(r \leq r^{\prime}\right)=P\left(x \leq x\left(r^{\prime}\right)\right)$
i.e. $\int_{-\infty}^{r^{\prime}} g(r) d r=r^{\prime}=\int_{-\infty}^{x\left(r^{\prime}\right)} f\left(x^{\prime}\right) d x^{\prime}=F\left(x\left(r^{\prime}\right)\right)$

That is, set $F(x)=r$ and solve for $x(r)$.

Example of the transformation method

Exponential pdf: $\quad f(x ; \xi)=\frac{1}{\xi} e^{-x / \xi} \quad(x \geq 0)$

$$
\begin{gathered}
\text { Set } \int_{0}^{x} \frac{1}{\xi} e^{-x^{\prime} / \xi} d x^{\prime}=r \quad \text { and solve for } x(r) . \\
\rightarrow \quad x(r)=-\xi \ln (1-r) \quad(x(r)=-\xi \ln r \text { works too. })
\end{gathered}
$$

The acceptance-rejection method

Enclose the pdf in a box:

(1) Generate a random number x, uniform in $\left[x_{\min }, x_{\max }\right]$, i.e. $x=x_{\min }+r_{1}\left(x_{\max }-x_{\min }\right), r_{1}$ is uniform in $[0,1]$.
(2) Generate a 2 nd independent random number u uniformly distributed between 0 and $f_{\max }$, i.e. $u=r_{2} f_{\max }$.
(3) If $u<f(x)$, then accept x. If not, reject x and repeat.

Example with acceptance-rejection method

$$
\begin{aligned}
& f(x)=\frac{3}{8}\left(1+x^{2}\right) \\
& (-1 \leq x \leq 1)
\end{aligned}
$$

If dot below curve, use x value in histogram.

Monte Carlo event generators

Simple example: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$
Generate $\cos \theta$ and ϕ :

$$
\begin{aligned}
& f\left(\cos \theta ; A_{\mathrm{FB}}\right) \propto\left(1+\frac{8}{3} A_{\mathrm{FB}} \cos \theta+\cos ^{2} \theta\right) \\
& g(\phi)=\frac{1}{2 \pi} \quad(0 \leq \phi \leq 2 \pi)
\end{aligned}
$$

Less simple: 'event generators' for a variety of reactions:

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}, \text {hadrons, } . .
$$ $\mathrm{pp} \rightarrow$ hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output $=$ 'events', i.e., for each event we get a list of generated particles and their momentum vectors, types, etc.

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.
Simulates detector response:
multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate Δ), electromagnetic, hadronic showers, production of signals, electronics response, ...
Output $=$ simulated raw data \rightarrow input to reconstruction software: track finding, fitting, etc.

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data.

Estimate 'efficiencies’ = \#events found / \# events generated.
Programming package: GEANT

