Hidden Conformal Symmetry of Warped AdS $_{3}$ Black Holes

Reza Fareghbal

Department of Physics,IPM

IPM School and Workshop on Applied AdS/CFT
May 2011

Warped AdS_{3} spacetime

- Warped AdS_{3} spacetimes appear in the near horizon geometry of extremal Kerr black holes:
- The Kerr metric is

$$
\begin{align*}
& d s^{2}=-\frac{\Delta}{\rho^{2}}\left(d \hat{t}-a \sin ^{2} \theta d \hat{\phi}\right)^{2}+\frac{\rho^{2}}{\Delta} d \hat{r}^{2}+\rho^{2} d \theta^{2} \\
&+\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(\hat{r}^{2}+a^{2}\right) d \hat{\phi}-a d \hat{t}\right)^{2} \tag{1}\\
& a \equiv \frac{J}{M}, \quad \Delta \equiv \hat{r}^{2}-2 M r+a^{2}, \quad \rho^{2} \equiv \hat{r}^{2}+a^{2} \cos ^{2} \theta, \tag{2}
\end{align*}
$$

- Horizons are at

$$
\begin{equation*}
r_{ \pm}=M \pm \sqrt{M^{2}-a^{2}} \tag{3}
\end{equation*}
$$

- For extremal cases (i.e. $r_{+}=r_{-}$), we define new coordinates

$$
\begin{equation*}
t=\frac{\lambda \hat{t}}{2 M^{2}}, \quad r=\frac{\hat{r}-M}{\lambda}, \quad \phi=\hat{\phi}-\frac{\hat{t}}{2 M} . \tag{4}
\end{equation*}
$$

- In the $\lambda \rightarrow 0$ limit, the result is the near-horizon geometry of the extremal Kerr (NHEK):

$$
\begin{equation*}
d s^{2}=\Gamma(\theta)\left[-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+d \theta^{2}\right]+\gamma(\theta)(d \phi+r d t)^{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(\theta)=M^{2}\left(1+\cos ^{2} \theta\right), \gamma(\theta)=\frac{4 M^{2} \sin ^{2} \theta}{1+\cos ^{2}(\theta)} \tag{6}
\end{equation*}
$$

- The NHEK geometry is not asymptotically flat!
- This geometry has $U(1) \times S L(2, R)$ isometry. The rotational $U(1)$ isometry is generated by the Killing vector $J_{0}=-\partial_{\varphi}$ and the $S L(2, R)$ is generated by

$$
\begin{align*}
& \bar{J}_{1}=\partial_{t}, \\
& \bar{J}_{2}=t \partial_{t}-r \partial_{r}, \\
& \bar{J}_{3}=\left(\frac{1}{2 r^{2}}+\frac{t^{2}}{2}\right) \partial_{t}-t r \partial_{r}-\frac{k}{r} \partial_{\phi} . \tag{7}
\end{align*}
$$

- For fixed θ, the geometry (5) is similar to the three-dimensional warped AdS_{3} spacetime,
$d s^{2}=\frac{\ell^{2}}{\left(\nu^{2}+3\right)}\left[-\cosh ^{2} \sigma d \tau^{2}+d \sigma^{2}+\frac{4 \nu^{2}}{\nu^{2}+3}(d u+\sinh \sigma d \tau)^{2}\right]$
which is a solution of the Topologically Massive Gravity (TMG):

$$
\begin{align*}
& I_{T M G}=\frac{1}{16 \pi G} \int_{\mathcal{M}} d^{3} x \sqrt{-g}\left(R+2 / \ell^{2}\right) \\
& \quad+\frac{\ell}{96 \pi G \nu} \int_{\mathcal{M}} d^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{r}\left(\partial_{\mu} \Gamma_{r \nu}^{\sigma}+\frac{2}{3} \Gamma_{\mu \tau}^{\sigma} \Gamma_{\nu r}^{\tau}\right) \tag{9}
\end{align*}
$$

- Besides WAdS_{3} geometries, the action (9) has warped AdS_{3} black hole solutions. These black holes are discrete quotients of warped AdS_{3} just as BTZ black holes are discrete quotients of the ordinary AdS_{3}.
- The metric of WAdS_{3} black hole is

$$
\begin{align*}
& d s^{2}=-N(r)^{2} d t^{2}+\ell^{2} R(r)^{2}\left(d \phi+N^{\phi}(r) d t\right)^{2}+\frac{\ell^{4} d r^{2}}{4 R(r)^{2} N(r)^{2}}, \\
& N(r)^{2} \equiv \frac{\ell^{2}\left(\nu^{2}+3\right)\left(r-r_{+}\right)\left(r-r_{-}\right)}{4 R(r)^{2}}, \\
& N^{\phi}(r) \equiv \frac{2 \nu r-\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}}{2 R(r)^{2}} \\
& R(r)^{2} \equiv \frac{r}{4}\left(3\left(\nu^{2}-1\right) r+\left(\nu^{2}+3\right)\left(r_{+}+r_{-}\right)\right. \\
&\left.-4 \nu \sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}\right) . \tag{10}
\end{align*}
$$

WAdS $_{3} /$ CFT $_{2}$ conjecture

- Quantum TMG is holographically dual to a 2D boundary CFT with $c_{R}=\frac{\left(5 \nu^{2}+3\right) \ell}{G \nu\left(\nu^{2}+3\right)}$ and $c_{L}=\frac{4 \nu \ell}{G\left(\nu^{2}+3\right)}$. [Anninos,Li, Padi, Song and Strominger (2008)]
- The motivations for this conjecture are that application of the Cardy formula to the CFT density of states reproduces the black hole entropy.
- The close relation between WAdS_{3} and NHEK geometries results in the following conjecture which is known as "Kerr/CFT correspondence":

Quantum gravity in the background of near horizon extremal Kerr black holes is holographically dual to a chiral two-dimensional conformal field theory.
[Guica, Hartman, Song, Strominger (2008)]

Hidden Conformal Symmetry

- The isometry of WAdS_{3} and NHEK is $U(1) \times S L(2, R)$. They do not have the $S L(2, R) \times S L(2, R)$ conformal symmetry of the dual CFT.
- The attempts to enhance the $U(1) \times S L(2, R)$ isometry of WAdS_{3} to the full conformal symmetry by making use of the Brown and Henneaux's asymptotic symmetry method, have not been unambiguously successful.
- The question which still remains unanswered is that What is the interpretation of dual conformal symmetry in terms of gravitational bulk theory?
- "Hidden conformal symmetry" may provide an answer to this question:
- In this proposal the conformal symmetry is not derived from a conformal symmetry of the spacetime geometry. It is a symmetry of solution space:
- To see this, Consider the warped AdS_{3} black hole (10). We want to study the propagation of a massive scalar field in this background.
- The Klein-Gordon equation for a massive scalar with mass m is

$$
\begin{equation*}
\left(\frac{1}{\sqrt{-g}} \partial_{\mu} \sqrt{-g} \partial^{\mu}-m^{2}\right) \Phi=0 . \tag{11}
\end{equation*}
$$

- Expanding in eigenmodes

$$
\begin{equation*}
\Phi(t, r, \theta, \phi)=e^{-i \omega t+i k \phi} \Phi(r, \theta) \tag{12}
\end{equation*}
$$

and imposing

$$
\begin{equation*}
\omega^{2} \ll \frac{\left(\nu^{2}+3\right)^{2}}{3\left(\nu^{2}-1\right)} \tag{13}
\end{equation*}
$$

simplifies the wave equation (11) to the form

$$
\begin{equation*}
\tilde{\mathcal{H}}^{2} \Phi=\mathcal{H}^{2} \Phi=\frac{\ell^{2} m^{2}}{\nu^{2}+3} \Phi \tag{14}
\end{equation*}
$$

where $\tilde{\mathcal{H}}^{2}$ and \mathcal{H}^{2} are the quadratic Casimir of two following $S L(2, R) \mathrm{s}$: [R.F. (2010)]

$$
\begin{gathered}
H_{0}=-\frac{2 i \nu}{\nu^{2}+3} \frac{T_{L}}{T_{R}} \partial t+\frac{i}{2 \pi \ell T_{R}} \partial_{\phi} \\
H_{1}=i e^{-2 \pi \ell T_{R} \phi}\left[-\frac{\nu}{\left(\nu^{2}+3\right) \sqrt{\Delta}}\left(\left(2 r-r_{+}-r_{-}\right) \frac{T_{L}}{T_{R}}+r_{+}-r_{-}\right) \partial_{t}\right. \\
\\
\left.+\sqrt{\Delta} \partial_{r}+\frac{2 r-r_{+}-r_{-}}{4 \pi \ell T_{R} \sqrt{\Delta}} \partial_{\phi}\right] \\
H_{-1}=i e^{2 \pi \ell T_{R} \phi}\left[-\frac{\nu}{\left(\nu^{2}+3\right) \sqrt{\Delta}}\right.
\end{gathered} \begin{array}{r}
\left(\left(2 r-r_{+}-r_{-}\right) \frac{T_{L}}{T_{R}}+r_{+}-r_{-}\right) \partial_{t} \\
\\
\left.-\sqrt{\Delta} \partial_{r}+\frac{2 r-r_{+}-r_{-}}{4 \pi \ell T_{R} \sqrt{\Delta}} \partial_{\phi}\right]
\end{array}
$$

$$
\begin{gathered}
\bar{H}_{0}=\frac{2 i \nu}{\nu^{2}+3} \partial t \\
\bar{H}_{1}=i e^{-\frac{\nu^{2}+3}{2 \nu} t-2 \pi \ell T_{L} \phi}[\\
\\
\quad \frac{\nu\left(\left(\nu^{2}+3\right)\left(2 r-r_{+}-r_{-}\right)+8 \pi \ell T_{L}\right)}{\left(\nu^{2}+3\right)^{2} \sqrt{\Delta}} \partial_{t} \\
\\
\bar{H}_{-1}=i e^{\frac{\nu^{2}+3}{2 \nu} t+2 \pi \ell T_{L} \phi}\left[\frac{\nu\left(\left(\nu^{2}+3\right)\left(2 r-r_{+}-r_{-}\right)+8 \pi \ell T_{L}\right)}{\left(\nu^{2}+3\right) \sqrt{\Delta}} \partial_{t}\right] \\
\\
\\
\end{gathered}
$$

- where

$$
\begin{gather*}
T_{R}=\frac{\left(\nu^{2}+3\right)\left(r_{+}-r_{-}\right)}{8 \pi \ell}, \tag{17}\\
T_{L}=\frac{\nu^{2}+3}{8 \pi \ell}\left(r_{+}+r_{-}-\frac{\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}}{\nu}\right), \tag{18}\\
\Delta=\left(r-r_{+}\right)\left(r-r_{-}\right) . \tag{19}
\end{gather*}
$$

- It is not difficult to see that the generators (15) and (16) satisfy the $S L(2, R) \times S L(2, R)$ algebra

$$
\begin{align*}
{\left[H_{n}, H_{m}\right] } & =i(n-m) H_{n+m} \\
{\left[\bar{H}_{n}, \bar{H}_{m}\right] } & =i(n-m) \bar{H}_{n+m} \\
{\left[H_{n}, \bar{H}_{m}\right] } & =0 \tag{20}
\end{align*}
$$

$$
(n, m=-1,0,1)
$$

- Hence the scalar Laplacian can be written as the $S L(2, R)$ Casimir and the $S L(2, R)_{L} \times S L(2, R)_{R}$ weights of the scalar field are

$$
\begin{equation*}
\left(h_{L}, h_{R}\right)=\left(\frac{1}{2} \sqrt{1+\frac{4 \ell^{2} m^{2}}{\nu^{2}+3}}-\frac{1}{2}, \frac{1}{2} \sqrt{1+\frac{4 \ell^{2} m^{2}}{\nu^{2}+3}}-\frac{1}{2}\right) . \tag{21}
\end{equation*}
$$

- Generators of hidden $S L(2, R) \times S L(2, R)$ are not periodic under $\phi \sim \phi+2 \pi$. Periodic identification of ϕ breaks the hidden symmetry to $U(1) \times U(1)$.
- This identification is generated by the group element

$$
\begin{equation*}
e^{\partial_{\phi}}=e^{-i 2 \pi \ell\left(T_{R} H_{0}+T_{L} \bar{H}_{0}\right)} \tag{22}
\end{equation*}
$$

- Interestingly, the identification (22) can be used to produce the warped black holes as a quotient of the warped $A d S_{3}$ and T_{R} and T_{L} may be interpreted as the right and left temperatures of the conformal field theory dual to the warped $A d S$ black holes.
- The Entropy calculation using the Cardy formula

$$
\begin{equation*}
S=\frac{\pi^{2} \ell}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right) \tag{23}
\end{equation*}
$$

supports this hypothesis.

Absorption cross section

- After imposing condition (13), the absorption cross section of the scalar field takes the following form

$$
\begin{aligned}
\sigma_{a b s} \sim & \sinh \left[2 \pi\left(\Omega_{+} \omega+U k\right)\right] \left\lvert\, \Gamma\left(\frac{1}{2}+\frac{1}{2} \sqrt{1+\frac{4 m^{2} \ell^{2}}{\nu^{2}+3}}\right.\right. \\
& \left.-i\left(\omega\left(\Omega_{+}+\Omega_{-}\right)+2 U k\right)\right)\left.\right|^{2} \\
& \left.\times \left\lvert\, \Gamma\left(\frac{1}{2}+\frac{1}{2} \sqrt{1+\frac{4 m^{2} \ell^{2}}{\nu^{2}+3}}-i \omega\left(\Omega_{+}-\Omega_{-}\right)\right) 2^{2} 4\right.\right)
\end{aligned}
$$

where

$$
\begin{align*}
U & =\frac{2}{\left(r_{+}-r_{-}\right)\left(\nu^{2}+3\right)} \tag{25}\\
\Omega_{+} & =\frac{2 \nu r_{+}-\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}}{\left(r_{+}-r_{-}\right)\left(\nu^{2}+3\right)} \tag{26}\\
\Omega_{-} & =\frac{2 \nu r_{-}-\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}}{\left(r_{+}-r_{-}\right)\left(\nu^{2}+3\right)} \tag{27}
\end{align*}
$$

- By defining

$$
\begin{aligned}
& \omega_{L} \equiv \delta E_{L}=\frac{1}{2 \ell}\left(\nu\left(r_{+}+r_{-}\right)-\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}\right) \omega \\
& \omega_{R} \equiv \delta E_{R}=\frac{1}{2 \ell}\left(\nu\left(r_{+}+r_{-}\right)-\sqrt{r_{+} r_{-}\left(\nu^{2}+3\right)}\right) \omega+\frac{k}{\ell}
\end{aligned}
$$

which are the left and right conjugate charges, we can rewrite (24) as

$$
\begin{align*}
\sigma_{\mathrm{abs}} \sim & T_{L}^{2 h_{L}-1} T_{R}^{2 h_{R}-1} \sinh \left(\frac{\omega_{L}}{2 T_{L}}+\frac{\omega_{R}}{2 T_{R}}\right) \\
& \left|\Gamma\left(h_{L}+i \frac{\omega_{L}}{2 \pi T_{L}}\right)\right|^{2}\left|\Gamma\left(h_{R}+i \frac{\omega_{R}}{2 \pi T_{R}}\right)\right|^{2} . \tag{28}
\end{align*}
$$

which is the well-known absorption cross section for a 2 d CFT.

