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AdS/CFT

Original AdS/CFT duality relates a given CFT (e.g. N = 4
SYM) to a given geometry (AdS5 × S5).

Since it also maps deformations of the geometry to
operators in the CFT, we can map other geometries to
deformed CFT’s.

Interesting relevant deformations of CFT’s can end up at
new fixed points, which can indicate new phases.

This corresponds to new AdS regions in the deformed
geometry.
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Geometry/FT

The RG flows away from the fixed points are also
interesting to study, although they are typically
non-universal and would depend on the renormalization
scheme.

A precise formulation of “integrating out degrees of
freedom” a la AdS/CFT can let us explore the space of
field theories. Heemskerk + Polchinski, Faulker+ Liu + Rangamani

Holographic RG gives us a natural framework to discuss
phenomenological Lagrangians, e.g. those of Faulkner +
Polchinski, Nickel + Son, Sachdev, ...
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A matrix field theory

Consider a 3D field theory of N × N matrices:

S =

∫

d3x [Tr

{

(∂iM)2 +
λ

N2 M6
}

+
gΛ
N2 (TrM2)2]

The coupling λ is marginally irrelevant.
The double trace operator gets generated through a diagram
like

These are summarized by the beta-functions

λ̇ = −Λ
∂

∂Λ
λ = −aλ2, ġ = g − bλg, a, b > 0
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RG flow in the field theory

The UV fixed point at the origin is the trivial fixed point.
Question: is there a strongly coupled IR fixed point? cf. Wilson
Fisher f.p. for ferromagnetic phase transitions.
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RG flow in gravity
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Cut-off field theory= Gravity with a finite boundary
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Wilsonian RG in AdS/CFT

ΛΛ

z=0 =ε

=Λ Λ Λ==
0

0

|   >< |φφ e |φ >
0

zIR

−  H

 =εz z

AdS/CFT:

ZCFT (Λ0, φ0) ≡
∫

DM|Λ0 exp[Sd
0 [M] +

∫

ddxφ0(x)O(x)] =

Zbulk (ǫ0, φ0) =

∫

Dφ|φ(x,ǫ0)=φ0(x) exp
(

Sd+1[φ]
)

= 〈IR|P e
∫ zIR
ǫ0

dz H |φ0(x)〉

=

∫

Dφ̃(x)〈IR|Pe−
∫ zIR
ǫ

dz H |φ̃(x)〉〈φ̃(x)|Pe−
∫

ǫ

ǫ0
dz H |φ0(x)〉

The Dirichlet B.C. corresponds to the “standard quantization”.
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Wilsonian RG in AdS/CFT

Z (ǫ0, φ0)

=

∫

Dφ̃(x)
∫

Dφ|
φ(ǫ,x)=φ̃(x)e

Sd+1[φ]〈φ̃(x)|Pe
−

∫
ǫ

ǫ0
dz H |φ0(x)〉

=

∫

Dφ̃(x)
∫

DM|ΛeSd
0 [M]+

∫
dd x φ̃(x)O(x)〈φ̃(x)|Pe

−
∫
ǫ

ǫ0
dz H |φ0(x)〉

≡
∫

DM|Λ0 exp[S̃d
0 [M] +

∫

ddx φ̃0(x)O(x)]

Integrating out the “fast variables” amounts to computing the
wave function.
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Example of a scalar probe

In principle, the above works when we consider all possible
couplings φαOα involving a complete set of local operators Oα,
including multi-traces.

However, let us assume, for the moment, that we can treat one
of the bulk fields φ in a “probe approximation” without
back-reacting on the others. If φ(z, x) is a scalar field, then

Sd+1
0 [φ] =

∫

dzdd x
√

g
(

∂µφ∂
µφ+ m2φ2)

If the geometry is AdS, then

〈φ̃(x)|P e−
∫

ǫ

ǫ0
dz H |φ0(x)〉 = exp[SH ],

SH =

∫

dd k
√
γ

(

−1
2

f (ǫ, k)φ̃(k)φ̃(−k) + J(ǫ, k)φ̃(−k)
)

+ C(ǫ)

ǫ∂ǫSH =
1
2

∫ √
γ

(

−(
∂SH

∂φ̃
)2 + (ǫ2k2 + m2)φ̃2

)

(1)
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The holographic RG transformation, translated to field theory,
becomes
∫

DM|Λ0 exp[Sd
0 [M] +

∫

ddxφ0(x)O(x)]

=

∫

Dφ̃(x)eSH [φ̃,ǫ;φ0,ǫ0]

∫

DM|ΛeSd
0 [M]+

∫
dd x φ̃(x)O(x)

=

∫

DM|Λ exp
[

S̃d
0 [M] +

∫

ddk
√
γ

(O(k)O(−k)
2γf (z, k)

+
J(z, k)O(−k)

f (k)
+ ...

)]

If O(x) is a single trace operator, we see that double trace
operators emerge out of the holographic RG transformation.
More accurately, the bulk action contains counterterms, and the
double trace coupling goes as g(k) ∼ 1/(f (k)−∆−).

Detour: if φ̃ is a “light” field, cannot integrate it, and this gives
rise to an additional, emergent, dynamical variable......
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Phenomenological Lagrangians: a preview

Then

Z (Λ0, φ0) =

∫

Dφ̃(x)DM|Λ exp
(

Stotal [M(x), φ̃(x), φ0(x)]
)

Stotal [M(x), φ̃(x), φ0(x)] = Sd
0 [M] + SH [φ̃(x), φ0(x)] +

∫

ddx φ̃(x)O(x)

The holographic representation of the low energy effective
action has an additional dynamical variable φ̃(x). One way of
interpreting it is as a random source. Alternatively, it can be
interpreted as an “emergent dynamical field”. Furthermore,
Stotal involves the non-dynamical bulk field φ0, which gives a
coupling between the UV and the IR fields.
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In a model involving bulk gauge fields AM(z, x), we have,
schematically

Stotal [M(x), ÃM(x),A0,µ(x)]

= Sd
0 [M] + SH [Ãµ(x), ϕ(x),A0,µ] +

∫

ddxÃµ(x)Oµ(x)

where Aµ(x) is an emergent U(1) field coupled to the low
energy matter sector M(x), A0,µ(x) refers to the
electromagnetic U(1)ext , and ϕ(x) (derived from Az) denotes a
Goldstone boson corresponding a symmetry breaking
U(1)× U(1)ext → U(1). Nickel+Son, Faulkner+Liu +Rangamani,

Sachdev
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Beta functions

Let us return to the Schrodinger flow of SH .
The flow of the double trace coupling is given by

ǫ∂ǫf (ǫ, k) = df (k)− f (k)2 + ǫ2kµkµ + m2R2

If we identify ǫ = 1/Λ (which is true for sufficiently small ǫ
Susskind+Witten), then this looks like

βf (k) = −Λ
d

dΛ
f (z, k) = df (k)− f (k)2 +

kµkµ
Λ2 + m2R2

The appearance of explicit cut-off factors makes such an
equation difficult to interpret; in particular, locations of fixed
points would appear to depend on Λ! It is not difficult to get
around this difficulty, by going to “dimensionless momenta”
k̄µ = ǫkµ, in terms of which the beta-function equations become
Elander+Isono+GM

βf (k̄) = (d − k̄µ
d

dk̄µ
)f (k̄)− f (k̄)2 + k̄µk̄µ + m2
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The RHS is now independent of the cut-off, at the expense of
introducing coupling between various momentum modes of
f (k̄). Define f (ǫ, k̄) ≡ ∑

n fn(ǫ)(k̄µk̄µ)2.

ḟ0 = df0 − f 2
0 + m2

ḟ1 = (d − 2)f1 − 2f0f1 + 1, ...
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The two fixed points are clearly visible. Their locations on
the f0-axis are
IR : f0 = ∆+ = d/2 + ν,
UV : f0 = ∆− = d/2 − ν.
Here ν =

√

d2/4 + m2R2.

The dimension of O at the IR fixed point turns out to be
∆O = ∆+: this fixed point corresponds to the “standard
quantization”.

The dimension of O at the UV fixed point is ∆O = ∆−,
hence this fixed point corresponds to the “alternative
quantization”. The AdS functional integral is specified by a
Neumann boundary condition in this case.
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We have chosen here m2R2 = −2, which is within the
window −9/4 ≤ m2R2 ≤ −5/4 where both CFT’s are
sensible. For this value

∆− = 3/2 −
√

9/4 − 2 = 1

which matches the free field (UV) fixed point mentioned
above (O = TrM2 has dimension ∆ = 1 at λ = g = 0). The
above consideration suggests that there is another (IR)
fixed point at strong coupling g∗ = ∞ where ∆ = ∆+ = 2.

If we choose m2R2 > −5/4, formally there are still two
fixed points. However, the UV fixed point in this case does
not define a sensible CFT (the states become
non-normalizable). From the viewpoint of RG, we find an
infinite number of relevant operators.
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Scalars in an extremal BH background

ds2 = z−2
(

dt2H(z) + dx2
i + dz2/H(z)

)

H = 1 + 3(
z
z∗

)4 − 4(
z
z∗

)3 (2)

The RG flow equation becomes

ḟ (k̄ , ǫ) = (d − k̄µ
∂

∂k̄µ
− ǫ∂ǫH/H)f (k̄ , ǫ)+

+
1√
H

(

−f 2 + k̄i k̄i + w̄2/H + m2
)
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The presence of H(ǫ) introduces, again, explicit factors of ǫ.
However, we should regard H(ǫ) as an additional coupling (we
can replace ǫ by H!), Recall H(ǫ) = gtt/gii , where gµν couples
to Tµν . The ǫ-dependence of H(ǫ) can be written as a
beta-function equation by eliminating ǫ between ǫ∂ǫH and H(ǫ)
(alternatively, see Kachru+Liu+Mulligan, etc.). Thus

Ḣ = βH(H), ḟ (k) = βf (k)(f ,H)

The flow of H is not affected by f since we are ignoring back
reactions here. There is a “large” matter sector with
Tµν ∼ O(N2), and a “small” matter sector which couples to
f (k), J(k), ....
To solve these explicitly, we employ a power series
f (k̄i , w̄) =

∑

n,m fn,m(k̄i k̄i)
nw̄2m.
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RG flow in the f0,0-H plane. The four fixed points are at
AdS4 limit (H = 1): (∆−,1), (∆+,1),
BH horizon (H = 0):
(
√

3/2 −
√

3/2 + m2,0), (
√

3/2 +
√

3/2 + m2,0).
In the diagram, m2 = −1. Hence the fixed points are at
(0.38,1), (2.62,1), (0.52,0), (1.92,0).
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Fermions

We now consider a Dirac field ψ(z, x) in the bulk

Sd+1
0 =

∫

dz ddx
√

g
(

ψΓMDMψ − mψψ
)

We will again use the “probe” approximation and ignore
possible back-reactions on other bulk fields e.g. the metric.

We need to specify the bulk functional integral with appropriate
B.C. for various components of the fermion field. ψ is both
position and momentum!

Notation: (d + 1)-dimensional γ-matrices: d = odd case

Γẑ :=

(

1 0
0 −1

)

, Γµ̂ :=

(

0 γµ̂

γµ̂ 0

)

,

ψ± :=

(

ψ+

ψ−

)

, ψ± := (ψ+, ψ−) ,
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The wavefunction

Generically, ψ− and ψ+ are the non-normalizable modes. The
“standard quantization” is defined by putting “Dirichlet boundary
condition” for these components. This implies choosing as the
initial state the eigenstates of these fermions, which are the
coherent states |χ+, χ−〉.
We define

〈η+, η−|Pe
−

∫
ǫ

ǫ0
H |χ+, χ−〉 ≡ exp[SH(η, ǫ;χ, ǫ0)]

By evaluation, Elander + Isono+ GM

SH = − 1
κ2

∫

ddk
(2π)d

[

η−Fsη+ + η−S−−χ− + χ+S++η+ + χ+Csχ−

]

where
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RG flows

√

gzz∂ǫFs = Fs(iγµKµ)Fs + iγµKµ − 2mFs ,
√

gzz∂ǫS−− = Fs(iγµKµ)S−− − m−S−− ,
√

gzz∂ǫS++ = S++(iγµKµ)Fs − m+S++ ,

√

gzz∂ǫ(χ+Csχ−) = χ+S++(iγµKµ)S−−χ− +
κ2

(2π)d (iγµKµFs)δ
d (k) ,

Here, Kµ = kµ − qAµ. Initial conditions for Fs,S±±,Cs are
obtained from 〈η+, η−|χ+, χ−〉,

Fs = Cs = 0 , S++ = S−− = 1, ǫ = ǫ0 .

We have solved the above RG equations (i) explicitly for the
AdS geometry and (ii) in terms of Dirac wavefunctions in an
arbitrary geometry.
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RG solution in terms of Dirac solutions

In order to solve the flow equations, we now introduce a spinor
(M±,M±) that satisfies the classical Dirac equations,

(∂ǫ ∓
√

gzzm)M± ± i
√

gzz γ
µKµM∓ = 0 ,

(∂ǫ ±
√

gzzm)M± ∓ i
√

gzz M∓γ
µKµ = 0 .

In terms of this spinor, we can write down general solutions to
the flow equations,

F = M−(M+)
−1 = (M−)

−1M+ , J− = (M−)
−1j− , J+ = j+(M+)

−1 ,

where j−, j+ are spinors independent of ǫ. Note that the indices
± of j , j do not always reflect the actual Γẑ-chirality and that
depends on whether M+,M− contain γ-matrices or not.
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Flow diagrams: AdS [standard quantization]

Define Fs = iγµ̂kµ̂
√

gtta. The RG equation becomes

ǫ∂ǫa = 1 − (2m + 1)a − ǫ2kµkµa2

As in the case of the bosons, this can be interpreted as a
beta-function, provided a is viewed as a function of ǫ and
k̄µ = ǫkµ. Writing

a(k̄µ, ǫ) =
∞
∑

n=0

an(ǫ)
(

k̄µk̄µ
)n−1

,

we get

ǫ∂ǫa0 = (1 − 2m)a0 − a2
0,

ǫ∂ǫa1 = 1 − (2m + 1)a1 − 2a0a1, · · ·
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Fermionic RG flow in charged BH
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Phenomenological Lagrangian

Recall

SH = − 1
κ2

∫

ddk
(2π)d

[

η−Fsη+ + η−S−−χ− + χ+S++η+ + χ+Csχ−

]

As discussed in the bosonic case, the full partition function of
the theory (in the sector described by the fermion coupling) will
be given by

Z (Λ0, χ) =

∫

Dη(x)DM|Λ exp (Stotal [M(x), η(x), χ(x)])

Stotal [M(x), η(x), χ(x)] = S̃d
0 [M] + SH [η(x), χ(x)] +

∫

ddxη(x)OF (x)
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Zero modes

Using the parameterization of the RG equation in terms of Dirac
solutions (written as a× non-normalizable +b× normalizable), we get

F−1
s (q, k) =

b+(k) + O(w) + χIR(k ,w)(b−(k) + O(w)

a+(k) + O(w) + χIR(k ,w)(a−(k) + O(w))

χIR(k ,w) ∼ w2νk , νk =
√

1/4 + m2 + k2 − q2

where b±(k),a±(k) are some known functions which characterize
solutions of Dirac equations. Here χIR is given by the bounrady
condition in the interior.
Suppose there exists kF such that a+(kF ) = 0. That is, at such a
value of k , the solution of the Dirac equation is purely normalizable.
Then, for k = kF +∆k , a+(k) ∼ ∆k . Thus,

Fs ∼ ∆k + O(w) + O(w2νkF )

For νkF > 1/2, Fs ∼ ∆k + w .
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Fermi surface
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Faulkner-Polchinski

Thus, the part in Stotal quadratic in η goes as

η−(i∂t + k − kF )η+

which precisely yields the semi-holographic Lagrangian of Faulkner
and Polchinski (identify M ↔ Ψ)

S = Sstrong [Ψ] +

∫

dtd2k{η†~k (i∂t − ǫ~k + µ)η~k + g~kη
†
~k
Ψ+ g∗

~k
Ψ†

~k
η}

Dyson-Schwinger for ψψ†:
— + — ..... — + — ..... —.....— + etc.

G0(~k ,w) + g~k G0(~k ,w)G(~k ,w)G0(~k ,w) + etc.

=
1

G−1
0 − g~kG0(~k ,w0)

which is the same as the connection formula obtained by solving the
Dirac equation.
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The important point is to note the bilinear coupling in SH

between the dynamical (strngly coupled) IR fermion η and
the non-dynamical fermion χ at the weakly coupled UV
fixed point.

Thus, the holographic RG method for fermions constitutes
a derivation of effective fermion Lagrangians e.g.
Faulkner+Polchinski. In particular, one can use Stotal [η,M] to
derive the non-fermi-liquid-type dispersion relation.
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Conclusions

We reviewed the HK-FLR proposal for Wilsonian RG in
AdS/CFT. This gives us a Geometry/FT duality.

We translated the holographic RG formalism into explicit
beta-functions and found RG flow diagrams with which we can
locate fixed points and infer about new phases of the theory.

We extended the holographic RG formalism to fermions.

We derived the phenomenological Lagrangian of Faulkner and
Polchinski from holographic RG.

We discussed the example of AdS and extremal charged BH
bgds for simplicity. However, our RG equations are valid for a
large class of metrics. (Radial ADM, Membrane paradigm)

From the Wilsonian viewpoint, we can have IR fixed points
without UV fixed points. In an appropriate context, this might
imply an AdS near-horizon geometry without an AdS geometry
asymptotically. (Flat space?)
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