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1 Tortoise Coordinate

• Suppose that the equation of motion of a general field Φ(t, r; ki) =
e−iωtφ(r; ki) in a spherically symmetric space has been written as

d2

dr2
φ(r) + A(m,ω, ki; r)

d

dr
φ(r) +

(
F 2(r)ω2 + B(m,ω, ki; r)

)
φ(r) = 0 (1)

ki are some quantum numbers, A(r), B(r) and F (r) are some general
functions appeared in equations of motion.

• T(ortoise) coordinate is defined by new variable r∗ and new field φ∗ as

φ∗(r∗) = θ(r)φ(r), r∗ = f(r), (2)

where the functions f(r) and θ(r) can be uniquely determined such that
one be able to bring the equation of motion of φ field in Schrodinger-like
form

(− d2

dr∗2
+ U(r∗))φ∗(r∗) = ω2φ∗(r∗) (3)

• We see that a Tortoise observer find the dynamics of a field is non-
relativistically.
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2 Why This Frame Is Important?

Understanding the physics in Tortoise frame is important for several reasons.

1. The equation of motion in this coordinate is in Schrodinger-like form
which is familiar. One may be able to solve it exactly and find the
spectrum of the theory and construct the Hilbert space of the theory.

2. Imposing the appropriate boundary condition on various fields needs
knowing of the asymptotic behavior of that fields. Finding potential U
in Totoise frame sheds light on this problem.

3. ...
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3 General Form of Effective Potential

• Applying Tortoise change of variables and demanding F 2ω2 ↪→ ω2 and
noting d

dr∗φ(r∗) ↪→ 0, we obtain two following conditions

f ′ = ±F, (4)

f ′′

f ′
= 2

θ′

θ
− A. (5)

• Then, the general form of effective potential in spherically symmetric
space reads as

U(r) =
1

2F 2

(
F ′′

F
− 3

2
(
F ′

F
)2 + A′ +

A2

2
− 2B

)
(6)

• Note that potential in which was written as (6) is a function of r instead
of r∗. So we have to solve f ′ = ±F and then find the inverse function
r = f−1(r∗).

• This procedure, however, can not be done analytically for all cases.

• Our aim is analyzing the global behavior of the effective potential, by
some simple calculations such as finding the extremums of potential,
and asymptotic behavior of U without using the exact coordinate rela-
tion r = f−1(r∗).

• Note also that there is a freedom in choosing the sign of f ′(r). The
form of the potential does not depend on this sign but the Continuity
of potential functions inside and outside of the horizon usually needs
to choose different signs for these two regions.
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4 Scalar in 3-D Black Hole Background

Now, we drive the E.o.M of scalar fields in a 3D spherically symmetric black
hole background. Then we obtain explicit form of the potential in Tortoise
coordinate.

• Consider the following spherically symmetric form for the metric in
three dimension

ds2 = −N2(r)dt2 + R2(r) (dθ + Nθ(r)dt)2 + P 2(r)dr2, (7)

The N(r), R(r), Nθ(r) and P (r) are specified with the specific solution
of E.o.M of gravity.

• The equation of motion of a massive scalar field in curved space-time
is given by

(
1√−g

∂µ(
√−g∂µ −m2)

)
Φ(t, θ, r) = 0, (8)

• Using (7), (8) and setting Φ(t, θ, r) = e−i(ωt−kθ)φ(r) then

∂2φ

∂r2
+

(
∆′

∆
− 2

P ′

P

)
∂φ

∂r
+

(
P 2

N2
(ω + kNθ)

2 +
P 2

R2
(m2R2 − k2)

)
φ = 0 (9)

where ∆ =
√−g = NRP
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• The form of the function U(r) for scalar field using A and B can be
written as

U(r) =
N2

2P 2

(
R′′

R
− R′

R

(
1

2

R′

R
+

P ′

P
− N ′

N

)
− 2B

)
(10)

In the next part of this section, we will present some examples, BTZ black
hole, new type black hole and black hole with no horizon.

We also evaluate the potential for zero mode, k = 0.

4.1 BTZ Black Hole

The BTZ black hole solution is given by

N2(r) =
(r2 − r2

+)(r2 − r2
−)

r2
, R2(r) = r2

P 2(r) =
r2

(r2 − r2
+)(r2 − r2−)

, Nθ =
r+r−
r2

(11)

where r+ and r− are the horizons of the BTZ black hole.
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a)Extremal BTZ:

• First of all, we calculate r∗ = f(r) as

r∗ = ±
∫

P

N
dr = ±

∫
r2

(r2 − r2
0)

2
dr

(12)

• By appropriate choosing of the sign in front of P/N , − for r > r0 and
+ for r < r0 regions, and setting the integration constant to zero we
have

r∗ = ± r

2(r2
0 − r2)

± 1

4r0

ln (±r0 − r

r0 + r
)

r = [0, r0) ⇔ r∗ = [0, +∞),
r = (r0, +∞) ⇔ r∗ = (+∞, 0]. (13)

where + and − are understood for interior and exterior regions of black
hole respectively.

• For potential we obtain

U(r) =
(r2 − r2

0)
2

4r6

(
(3− 4m2)r4 + 2r2

0r
2 − 5r4

0

)
. (14)
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Figure 1: Potential for massless scalar in extremal BTZ: r0 = 1

• The extremums of U(r∗)

d

dr∗
U(r∗) =

(r2 − r2
0)

2

2r9

(
(3− 4m2)r8 + (6 + 4m2)r4

0r
4 − 24r6

0r
2 + 15r8

0

)
= 0 (15)

The asymptotic behavior of U(r) and the extremums of U(r) depend
on the range of m2.

1. m2 = 0: In this case

U(r 7→ 0) 7→ −∞, U(r = r0) = 0, U(r 7→ +∞) 7→ +∞. (16)

From (15) we see U(r) has only one real positive extremum in r =
r0. In fact, the r = r0 also is an inflection point of U(r)(Figure(1)).

2. 0 ≤ m2 ≤ 3
4

:

U(r 7→ +∞) 7→ +∞. (17)

and potential has two extremums one in r1 = r0 and the other in
r2 > r0(Figure(2)).

3. 3
4

< m2 ≤ 3.33
4

:

U(r 7→ +∞) 7→ −∞. (18)

and potential has three extremums one in r1 = r0 and two others
are in r2, r3 > r0(Figure(1)).

4. 3.33
4

< m2:

U(r 7→ +∞) 7→ −∞. (19)

and potential has only one extremun in r1 = r0(Figure(4)).
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Figure 2: Potential for massive scalar 0 ≤ m2 = 0.5 ≤ 3
4

in extremal BTZ:
r0 = 1

1 2 3 4 5
r

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

U HrL

Figure 3: Potential for massive scalar 3
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Figure 4: Potential for massive scalar 3.33
4

< m2 = 1 in extremal BTZ: r0 = 1
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b)non-Extremal BTZ:

• In this case, after finding r∗ in term of r, by appropriate choose of the
sign of + and −, we have

r = [0, r−) ⇔ r∗ = [0, +∞),
r = (r−, r+) ⇔ r∗ = (+∞,−∞),
r = (r+,∞) ⇔ r∗ = (−∞, 0], (20)

• The effective potential also reads as

U(r) =
(r2 − r2

+)(r2 − r2
−)

4r6

(
(3− 4m2)r4 + (r2

+ + r2
−)r2 − 5r2

+r2
−
)
. (21)

Let us consider only the massless scalar.

• U(r) has three real positive roots at r± and

r0 = −1

6
(r2

+ + r2
− −

√
r4
+ + r4− + 62r2

+r2−)

where r− < r0 < r+.

• The asymptotic behavior of U is such that U → −∞ as r → 0 and
U → +∞ as r → +∞.

• The extremums of U(r∗) is given by solving the following equation

d

dr∗
U(r∗) =

(r2 − r2
+)(r2 − r2

−)

2r9
×

× (
3r8 + (r4

+ + r4
− + 4r2

+r2
−)r4 − 12r2

+r2
−(r2

+ + r2
−)r2 + 15r4

+r4
−
)

= 0.(22)

Again r+ and r− are extremums of U(r∗).
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Figure 5: Potential for massless scalar in non-extremal BTZ: r− = 1, r+ = 3

• Defining x = r2 and recalling properties of quartic equation, we can
prove that there are exactly two real positive extremas for potential.

• In fact, if x1, x2, x3 and x4 be the roots of (22) they should satisfy

x1x2x3x4 = 15r4
+r4

− > 0
Σxixjxk = 12r2

+r2
−(r2

+ + r2
−) > 0

Σxixj = r4
+ + r4

− + 4r2
+r2

− > 0
Σxi = 0 (23)

Note that if a complex number z be a solution of a polynomial equation
then the z̄ also is a solution.

We may plot the U(r) qualitatively as(Figure(5))
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4.2 Black Hole with No Horizon

In this section, we study black holes with vanishing horizon in three dimen-
sions.

As we will see, the global behavior of this solution, in general, is different
from the BTZ and new type solutions. Especially, the asymptotic behavior
of potential is completely different.

• A class of such solutions in three dimensional massive gravity is given
by

R2(r) = l2a+r2 + 2r + l2d, N2 =
4r2

l2R2

P 2(r) =
l2

4r2
Nθ =

2r

lR2
(24)

where l, m are parameters in three dimensional massive gravity and
a+, d are some integration constants.

• Having regular solution forces us m2l2 = 17/2 and a+ > 0, d > 0.

• Defining l2a+r = x and l4da+ = s we obtain U(r) for massless scalar
as

U(r) =
4x3

a+l6(x2 + 2x + s)3

(
x3 + 6x2 + (6s + 3)x + 4s

)
(25)
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• We see that U(r) ≥ 0 for r ≥ 0 and

U(r → 0) → 0, U(r →∞) → 4

a+l6
(26)

• For derivative of potential d
dr∗U(r∗)

d

dr∗
U(r∗) ∝ x4

R9

(
(3− s)x3 + (5s + 1)x2 + 2s(2s + 1)x + 2s2

)
= 0. (27)

• We see that x = 0 and roots of

(3− s)x3 + (5s + 1)x2 + 2s(2s + 1)x + 2s2 = 0 (28)

are the extremums of U .

• Here there are two regions in term of s.

1. If 0 < s 5 3, equation (28) has no solution.

2. If s > 3, then by considering the general properties of cubic equa-
tions

x1x2x3 = − 2s2

3− s
> 0

Σxixj =
2s(2s + 1)

3− s
< 0

Σxi = −5s + 1

3− s
> 0 (29)

one can prove that (28) has only one real positive solution.

So, the general behavior of the effective potential can be plotted as
(Figure(9)).
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Figure 6: Potential for massless scalar in black hole with no horizon: the
blue curve is for 0 < s ≤ 3 and the red curve is for s > 3.

5 Fermions in 3−D Black Hole Background

• The equation of motion for a spinor field is Dirac equation in curved
background

(−iγaeµ
aDµ + m)Ψ(t, θ, r) = 0, (30)

where the covariant derivative is defined as Dµ = ∂µ − i
4
ηacω

c
bµσ

ab and

σab = i
2
[γa, γb].

ωc
bµ are spin connection and are defined by veilbeins and Christoffel

coefficients as ωc
bµ = ec

ν∂µe
ν
b + ec

νe
σ
b Γν

σµ.

• For the background (7), one can obtain non-zero veilbains as

et
0 = − 1

N
, eθ

0 =
Nθ

N
, er

1 =
1

P
, eθ

2 =
1

R
, (31)

and so the covariant derivatives take such forms

Dt = ∂t, Dθ = ∂θ,

Dr = ∂r − i

8NR
∂r(R

2Nθ)σ1 (32)

• By rewriting two dimensional spinor field Ψ(t, θ, r) as

Ψ(t, θ, r) = e−i(ωt−kθ)

(
φ+

φ−

)
(33)
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we find two coupled equations for φ+ and φ−

Mφ+ +Nφ− + ∂rφ
− = 0

M̄φ− + N̄φ+ + ∂rφ
+ = 0 (34)

where

N = i
P

N
(ω + kNθ)

M =
1

8NR
∂r(R

2Nθ) + P (m + i
k

R
), (35)

• One may obtain following tow decoupled equations for φ+ and φ−

∂2
rφ

+ + (−∂rM̄
M̄ )∂rφ

+ + (|N |2 − |M|2 + M̄∂r(
N̄
M̄))φ+ = 0,(36)

∂2
rφ

− + (−∂rM
M )∂rφ

− + (|N |2 − |M|2 +M∂r(
N
M))φ− = 0 (37)

• Again the coefficient of ω2 is ( P
N

)2. This is just from the fact that spinor
equation is obtained in a spherically symmetric space.

• Thus, we obtain

U(r) =
N2

2P 2

(
P ′′

P
− N ′′

N
− M̄′′

M̄ − 3

2
(
P ′

P
)2 +

1

2
(
N ′

N
)2 +

3

2
(
M̄′

M̄ )2 + (
P ′

P
)(

N ′

N
)− 2B

)
(21) (38)

for φ+ and Ū for φ−.
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