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Definition of Entanglement Entropy (EE):

Consider a Hilbert space factorization as:

Htot =HA ⊗HB

Reduced density matrix (for part A)

ρA = TrB [ρtot]

EE: von-Neumann entropy for ρA

SA = −TrA [ρA log ρA]
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EE in QFTs:

Consider a QFT defined on R ×M,

DivideM to A and B such that A ∪B =M,

ϵ

Many-body System

A

B

A B

∂A

ϵ→ 0

Quantum Field Theory
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EE Properties

For a pure ρtot we find SA = SB
EE is not extensive

For non-intersecting subsystems A, B, C

SA+B+C + SB ≤ SA+B + SB+C
SA + SC ≤ SA+B + SB+C

Strong Subadditivity

If B = ∅, SS reduces to subadditivity

SA+B ≤ SA + SB
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Area Divergence (Area Law)

In a QFT, EE suffers from UV divergence
[Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]

EE in a (d + 1) dim. local QFT is proportional to the
(d − 1) dim boundary ∂A

SA = γ ⋅
Area(∂A)

ϵd−1
+⋯

Intuitively the most strongly entangled region lies around
∂A

A

∂A

B
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Area Divergence (Area Law)

A special case: 2-dim CFT

SA =
c

3
log

ℓ

ϵ

For (d + 1)-dim CFTs, for a smooth entangling region
(calculated by HEE) [Ryu-Takayanagi 06]

SA = γ1 ⋅ (
ℓ

ϵ
)
d−1
+ γ3 ⋅ (

ℓ

ϵ
)
d−3
+⋯ +

⎧⎪⎪⎨⎪⎪⎩

γd−1 ⋅ ( ℓϵ) + γd d ∶ even
γd−2 ⋅ ( ℓϵ)

2 + c̃ log ℓ
ϵ d ∶ odd

For d = 1, c̃ = c/3
For d = 3 the result is confirmed in CFT4
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Area Law Violation

1 Logarithmic Divergence [Wolf 05, Gioev-Klich 05,

Ogawa-Takayanagi-Ugajin 11, Huijse-Sachdev-Swingle 11]

In systems with Fermi surface

SA = c1 (
L

ϵ
)
d−1
+ c2 (LkF )d−1 log (ℓkF ) +O (ℓ0)

For kF ∼ ϵ−1, if ℓ ∼ L, the second term is leading!

2 Volume Divergence [Shiba-Takayanagi 13, Karczmarek-Sabella-Garnier

13]

Volume law divergence has been in a non-local QFT defined
(in 1+1 dim.) by

H = ∫ dx [ϕ̇2(x) + ϕ(x)eα
√
−∂2

ϕ(x)]

For ℓ≪ α, volume law has been observed i.e. SA ∼ ℓα
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Entanglement via Interaction

Two QFTs living on a common spacetime

S = ∫ dxd [L1 +L2 +Lint]

Hilbert space decomposition

H =H1 ⊗H2

Trace out ρtot over either QFTs:

Sent = −Tr [ρ1 log ρ1] , ρ1 = TrH2[ρtot].

If Lint = 0, Sent vanishes.

[A. M., N. Shiba, T. Takayanagi JHEP 04(2014)185]
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Massive and Massless Models

Massless interaction

S = 1

2
∫ ddx[(∂µϕ)2 + (∂µψ)2 + λ∂µϕ∂µψ].

Massive interaction

S = 1

2
∫ ddx [(∂µϕ)2 + (∂µψ)2 − (ϕ,ψ)(

A C
C B

)(ϕ
ψ
)] ,

Trace out ϕ and calculate EE of ψ

ρψ[ψ1, ψ2] = ∫ Dϕ Ψ∗[ϕ,ψ1]Ψ[ϕ,ψ2]
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Field Theory Results

Replica wave functional method leads to:

1 Massless case

Sψ ∝ Vd−1Λ
d−1

Volume law divergence

2 Massive case

Sψ

Vd−1
∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

finite for d ≤ 4
1

2
(lnΛ)2 for d = 5
1

d − 5
Λd−5 lnΛ for d ≥ 6.

Suppression of volume law divergence
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Holographic Entanglement Entropy

In the context of AdS/CFT correspondence, Ryu and
Takayanagi proposed (2006):

SA =
1

4G
(d+2)
N

min
∂A=∂γA

[Area(γA)]

z

A

B

CFTd+1

AdSd+2

A
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Gravity Dual of Two Interacting CFTs

Consider N D3-brane located at y⃗a, a = 1,2,⋯,N
Type IIB SUGRA solution (in the NHL)

ds2 = f−1/2(y⃗)dxµdxµ + f1/2(y⃗)dyidyi

where µ = 0,1,2,3 and i = 1,2, ⋅ ⋅ ⋅,6

f(y⃗) =
N

∑
a=1

R4

∣y⃗ − y⃗a∣4

If all D3-branes are located at one point (∣y∣ = r)

ds2 = r
2

R2
dxµdxµ +

R2

r2
(dr2 + r2dθ2 + r2 sin2 θdΩ2

4)

which is AdS5× S5
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SU(N/2)×SU(N/2) Solution

Consider two stack of n and m D3-branes at Y⃗1,2 = (±ℓ, 0⃗)

f(y⃗) = n
N

R4

∣y⃗ − Y⃗1∣4
+ m
N

R4

∣y⃗ − Y⃗2∣4

For n =m = N
2 , and Λ≪ ℓ, the gauge theory sym. is

SU(N/2) × SU(N/2)

Argument: EE between these CFTs is given by

Sent =
Area(γ)
4G10

N

,

γ: Minimal surface separating the two stacks of branes
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HEE of Two SU(N/2) Gauge Theories

γ is 8-dim surface:

γ ∶ t = 0 , θ = π
2

Sent =
V3Vol(S4)
4G
(10)
N

∫
rUV

0
R2 r4

r2 + ℓ2
dr

With rUV = ΛR2 and rUV ≪ ℓ

Sent ≃
16N2V3
15π3

λgΛ3

The same result from D3-brane shell solution
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A proposal for generalized HEE

In classical gravity approx. we have a AdSd+1/CFTd setup

The gravity dual is described by Mq+d+1 =YAdSd+1 × Xq

YAdS
d+1 ∶ (d + 1) dimensional asymptotically AdS space

Xq ∶ q dimensional internal space

In Poincare coor. ∂Mq+d+1 = R1,d−1× Xq

Consider A and B such that ∂A(= ∂B) divides R1,d−1× Xq
into two parts at t = t0
Main assumption: separation of time slices of ∂Mq+d+1
corresponds to a factorization of Hilbert space in the dual
CFT:

HCFT =HA ⊗HB.
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A proposal for generalized HEE

Under this assumption, EE of A is given by

Sent =
Area(γ)
4GN

,

γ: the minimal (or extremal in time-dependent cases)
surface i.e. ∂γ = ∂A
In particular, if ∂A wraps Xq completely, this prescription
is reduced to the standard HEE
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Examples of GHEE

A fundamental example: AdS5×S5
A(B): Northern (southern) hemisphere of S5

Sent =
4

9π2
N2V3
ϵ3

Sent < 1
2π

N2V3
ϵ3
(= Smax) [Susskind & Witten 98]

Finite temp. case: AdS5-Schld×S5

Sent =
4

9π2
N2V3
ϵ3
+ 1.83 ⋅N2V3T

3

comparable with free SU(N/2) N = 4 SYM [RT 06]

Sfree
thermal ≃ 1.64 ⋅N

2V3T
3
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Examples of GHEE

If A is not half of S5 (∂A: θ = θ0 at t = 0)

..

B

.

A

.
θ0
.

S5

.S4 .

S4

Entanglement of SU(n) and SU(m) subsectors of SU(N)

Sent =
R2V3Vol(S4)

4G
(10)
N

∫
rUV

r∗
r2 sin4 θ(r)

√
1 + r2θ̇2(r)dr
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Examples of GHEE
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Summery & Conclusions

EE of two interacting CFTs → volume law divergence
(suppressed in massive QFTs)

Holographically dividing the internal space could address
the EE of two interacting CFTs

GHEE: Minimize a surface in the whole manifold
Mq+d+1 =YAdSd+1 × Xq rather than only the asymptotically
AdS part YAdSd+1
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