Entanglement Entropy of Interacting QFTs

Ali Mollabashi

School of Physics (IPM)

In collaboration with: N. Shiba \& T. Takayanagi
(JHEP 04 (2014) 185)

String School and Workshop 2015

Outline

(1) Introduction

- Entanglement Entropy
- Area Law Divergence
(2) EE of two QFTs
- Entanglement via Interaction
- EE in Massive and Massless Models
(3) Holographic EE of Interacting CFTs
- Holographic Entanglement Entropy
- A Holographic Setup
- Generalized HEE

Definition of Entanglement Entropy (EE):

- Consider a Hilbert space factorization as:

$$
\mathcal{H}_{\text {tot }}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

- Reduced density matrix (for part A)

$$
\rho_{A}=\operatorname{Tr}_{B}\left[\rho_{\mathrm{tot}}\right]
$$

- EE: von-Neumann entropy for ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left[\rho_{A} \log \rho_{A}\right]
$$

EE in QFTs:

- Consider a QFT defined on $\mathbb{R} \times \mathcal{M}$,
- Divide \mathcal{M} to A and B such that $A \cup B=\mathcal{M}$,

Many-body System

EE in QFTs:

- Consider a QFT defined on $\mathbb{R} \times \mathcal{M}$,
- Divide \mathcal{M} to A and B such that $A \cup B=\mathcal{M}$,

Many-body System

EE in QFTs:

- Consider a QFT defined on $\mathbb{R} \times \mathcal{M}$,
- Divide \mathcal{M} to A and B such that $A \cup B=\mathcal{M}$,

Many-body System
Quantum Field Theory

EE Properties

- For a pure $\rho_{\text {tot }}$ we find $S_{A}=S_{B}$ EE is not extensive
- For non-intersecting subsystems A, B, C

$$
\begin{aligned}
S_{A+B+C}+S_{B} & \leq S_{A+B}+S_{B+C} \\
S_{A}+S_{C} & \leq S_{A+B}+S_{B+C}
\end{aligned}
$$

Strong Subadditivity

- If $B=\varnothing$, SS reduces to subadditivity

$$
S_{A+B} \leq S_{A}+S_{B}
$$

Area Divergence (Area Law)

- In a QFT, EE suffers from UV divergence
[Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]
- EE in a $(d+1)$ dim. local QFT is proportional to the $(d-1)$ dim boundary ∂A

$$
S_{A}=\gamma \cdot \frac{\operatorname{Area}(\partial A)}{\epsilon^{d-1}}+\cdots
$$

- Intuitively the most strongly entangled region lies around ∂A

Area Divergence (Area Law)

- In a QFT, EE suffers from UV divergence
[Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]
- EE in a $(d+1)$ dim. local QFT is proportional to the $(d-1)$ dim boundary ∂A

$$
S_{A}=\gamma \cdot \frac{\operatorname{Area}(\partial A)}{\epsilon^{d-1}}+\cdots
$$

- Intuitively the most strongly entangled region lies around ∂A

Area Divergence (Area Law)

- A special case: 2-dim CFT

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{\epsilon}
$$

- For $(d+1)$-dim CFTs, for a smooth entangling region (calculated by HEE) [Ryu-Takayanagi 06]

$$
S_{A}=\gamma_{1} \cdot\left(\frac{\ell}{\epsilon}\right)^{d-1}+\gamma_{3} \cdot\left(\frac{\ell}{\epsilon}\right)^{d-3}+\cdots+ \begin{cases}\gamma_{d-1} \cdot\left(\frac{\ell}{\epsilon}\right)+\gamma_{d} & d: \text { even } \\ \gamma_{d-2} \cdot\left(\frac{\ell}{\epsilon}\right)^{2}+\tilde{c} \log \frac{\ell}{\epsilon} & d: \text { odd }\end{cases}
$$

- For $d=1, \tilde{c}=c / 3$
- For $d=3$ the result is confirmed in CFT_{4}

Area Law Violation

(1) Logarithmic Divergence [Wolf 05, Gioev-Klich 05, Ogawa-Takayanagi-Ugajin 11, Huijse-Sachdev-Swingle 11]

- In systems with Fermi surface

$$
S_{A}=c_{1}\left(\frac{L}{\epsilon}\right)^{d-1}+c_{2}\left(L k_{F}\right)^{d-1} \log \left(\ell k_{F}\right)+\mathcal{O}\left(\ell^{0}\right)
$$

- For $k_{F} \sim \epsilon^{-1}$, if $\ell \sim L$, the second term is leading!

Area Law Violation

(1) Logarithmic Divergence [Wolf 05, Gioev-Klich 05,

Ogawa-Takayanagi-Ugajin 11, Huijse-Sachdev-Swingle 11]

- In systems with Fermi surface

$$
S_{A}=c_{1}\left(\frac{L}{\epsilon}\right)^{d-1}+c_{2}\left(L k_{F}\right)^{d-1} \log \left(\ell k_{F}\right)+\mathcal{O}\left(\ell^{0}\right)
$$

- For $k_{F} \sim \epsilon^{-1}$, if $\ell \sim L$, the second term is leading!
(2) Volume Divergence [Shiba-Takayanagi 13, Karczmarek-Sabella-Garnier 13]
- Volume law divergence has been in a non-local QFT defined (in $1+1$ dim.) by

$$
H=\int d x\left[\dot{\phi}^{2}(x)+\phi(x) e^{\alpha \sqrt{-\partial^{2}}} \phi(x)\right]
$$

- For $\ell \ll \alpha$, volume law has been observed i.e. $S_{A} \sim \ell \alpha$

Entanglement Entropy of two QFTs

Entanglement via Interaction

- Two QFTs living on a common spacetime

$$
S=\int d x^{d}\left[\mathcal{L}_{1}+\mathcal{L}_{2}+\mathcal{L}_{i n t}\right]
$$

- Hilbert space decomposition

$$
\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}
$$

Trace out $\rho_{t o t}$ over either QFTs:

$$
S_{\text {ent }}=-\operatorname{Tr}\left[\rho_{1} \log \rho_{1}\right], \quad \rho_{1}=\operatorname{Tr}_{\mathcal{H}_{2}}\left[\rho_{t o t}\right] .
$$

- If $\mathcal{L}_{\text {int }}=0, S_{\text {ent }}$ vanishes.
[A. M., N. Shiba, T. Takayanagi JHEP 04(2014)185]

Massive and Massless Models

- Massless interaction

$$
S=\frac{1}{2} \int d^{d} x\left[\left(\partial_{\mu} \phi\right)^{2}+\left(\partial_{\mu} \psi\right)^{2}+\lambda \partial_{\mu} \phi \partial^{\mu} \psi\right] .
$$

- Massive interaction

$$
S=\frac{1}{2} \int d^{d} x\left[\left(\partial_{\mu} \phi\right)^{2}+\left(\partial_{\mu} \psi\right)^{2}-(\phi, \psi)\left(\begin{array}{cc}
A & C \\
C & B
\end{array}\right)\binom{\phi}{\psi}\right],
$$

- Trace out ϕ and calculate EE of ψ

$$
\rho_{\psi}\left[\psi_{1}, \psi_{2}\right]=\int D \phi \Psi^{*}\left[\phi, \psi_{1}\right] \Psi\left[\phi, \psi_{2}\right]
$$

Field Theory Results

Replica wave functional method leads to:
(1) Massless case

$$
S_{\psi} \propto V_{d-1} \Lambda^{d-1}
$$

Volume law divergence
(2) Massive case

$$
\frac{S_{\psi}}{V_{d-1}} \propto\left\{\begin{array}{lll}
\text { finite } & \text { for } & d \leq 4 \\
\frac{1}{2}(\ln \Lambda)^{2} & \text { for } & d=5 \\
\frac{1}{d-5} \Lambda^{d-5} \ln \Lambda & \text { for } & d \geq 6
\end{array}\right.
$$

Suppression of volume law divergence

Holographic EE of Interacting CFTs

Holographic Entanglement Entropy

- In the context of AdS/CFT correspondence, Ryu and Takayanagi proposed (2006):

$$
S_{A}=\frac{1}{4 G_{N}^{(d+2)}} \min _{\partial A=\partial \gamma_{A}}\left[\operatorname{Area}\left(\gamma_{A}\right)\right]
$$

Holographic Entanglement Entropy

- In the context of AdS/CFT correspondence, Ryu and Takayanagi proposed (2006):

$$
S_{A}=\frac{1}{4 G_{N}^{(d+2)}} \min _{\partial A=\partial \gamma_{A}}\left[\operatorname{Area}\left(\gamma_{A}\right)\right]
$$

Gravity Dual of Two Interacting CFTs

- Consider N D3-brane located at $\vec{y}_{a}, a=1,2, \cdots, N$
- Type IIB SUGRA solution (in the NHL)

$$
d s^{2}=f^{-1 / 2}(\vec{y}) d x^{\mu} d x_{\mu}+f^{1 / 2}(\vec{y}) d y^{i} d y^{i}
$$

where $\mu=0,1,2,3$ and $i=1,2, \cdots, 6$

$$
f(\vec{y})=\sum_{a=1}^{N} \frac{R^{4}}{\left|\vec{y}-\vec{y}_{a}\right|^{4}}
$$

Gravity Dual of Two Interacting CFTs

- Consider N D3-brane located at $\vec{y}_{a}, a=1,2, \cdots, N$
- Type IIB SUGRA solution (in the NHL)

$$
d s^{2}=f^{-1 / 2}(\vec{y}) d x^{\mu} d x_{\mu}+f^{1 / 2}(\vec{y}) d y^{i} d y^{i}
$$

where $\mu=0,1,2,3$ and $i=1,2, \cdots, 6$

$$
f(\vec{y})=\sum_{a=1}^{N} \frac{R^{4}}{\left|\vec{y}-\vec{y}_{a}\right|^{4}}
$$

- If all D3-branes are located at one point $(|y|=r)$

$$
d s^{2}=\frac{r^{2}}{R^{2}} d x^{\mu} d x_{\mu}+\frac{R^{2}}{r^{2}}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \Omega_{4}^{2}\right)
$$

which is $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$

$\mathrm{SU}(N / 2) \times \mathrm{SU}(N / 2)$ Solution

- Consider two stack of n and m D3-branes at $\vec{Y}_{1,2}=(\pm \ell, \overrightarrow{0})$

$$
f(\vec{y})=\frac{n}{N} \frac{R^{4}}{\left|\vec{y}-\vec{Y}_{1}\right|^{4}}+\frac{m}{N} \frac{R^{4}}{\left|\vec{y}-\vec{Y}_{2}\right|^{4}}
$$

- For $n=m=\frac{N}{2}$, and $\Lambda \ll \ell$, the gauge theory sym. is

$$
\mathrm{SU}(N / 2) \times \mathrm{SU}(N / 2)
$$

- Argument: EE between these CFTs is given by

$$
S_{\mathrm{ent}}=\frac{\operatorname{Area}(\gamma)}{4 G_{N}^{10}}
$$

γ : Minimal surface separating the two stacks of branes

HEE of Two SU(N/2) Gauge Theories

- γ is 8 -dim surface:

$$
\gamma: t=0, \quad \theta=\frac{\pi}{2}
$$

-

$$
S_{\mathrm{ent}}=\frac{V_{3} \operatorname{Vol}\left(\mathrm{~S}^{4}\right)}{4 G_{N}^{(10)}} \int_{0}^{r_{U V}} R^{2} \frac{r^{4}}{r^{2}+\ell^{2}} d r
$$

- With $r_{U V}=\Lambda R^{2}$ and $r_{U V} \ll \ell$

$$
S_{\mathrm{ent}} \simeq \frac{16 N^{2} V_{3}}{15 \pi^{3}} \lambda g \Lambda^{3}
$$

- The same result from D3-brane shell solution

A proposal for generalized HEE

- In classical gravity approx. we have a $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ setup
- The gravity dual is described by $\mathrm{M}_{q+d+1}=\mathrm{Y}_{d+1}^{A d S} \times \mathrm{X}_{q}$

$$
\begin{aligned}
& \mathrm{Y}_{d+1}^{A d S}:(d+1) \text { dimensional asymptotically } \mathrm{AdS} \text { space } \\
& \mathrm{X}_{q}: q \text { dimensional internal space }
\end{aligned}
$$

- In Poincare coor. $\partial \mathrm{M}_{q+d+1}=\mathbb{R}^{1, d-1} \times \mathrm{X}_{q}$
- Consider A and B such that $\partial A(=\partial B)$ divides $\mathbb{R}^{1, d-1} \times \mathrm{X}_{q}$ into two parts at $t=t_{0}$
- Main assumption: separation of time slices of $\partial \mathrm{M}_{q+d+1}$ corresponds to a factorization of Hilbert space in the dual CFT:

$$
\mathcal{H}_{C F T}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

A proposal for generalized HEE

- Under this assumption, EE of A is given by

$$
S_{\mathrm{ent}}=\frac{\operatorname{Area}(\gamma)}{4 G_{N}}
$$

γ : the minimal (or extremal in time-dependent cases) surface i.e. $\partial \gamma=\partial A$

- In particular, if ∂A wraps X_{q} completely, this prescription is reduced to the standard HEE

Examples of GHEE

- A fundamental example: $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
$A(B)$: Northern (southern) hemisphere of S^{5}

$$
S_{\mathrm{ent}}=\frac{4}{9 \pi^{2}} \frac{N^{2} V_{3}}{\epsilon^{3}}
$$

$$
S_{\text {ent }}<\frac{1}{2 \pi} \frac{N^{2} V_{3}}{\epsilon^{3}}\left(=S_{\max }\right) \quad[\text { Susskind \& Witten 98] }
$$

- Finite temp. case: AdS_{5}-Schld \times S 5

$$
S_{\text {ent }}=\frac{4}{9 \pi^{2}} \frac{N^{2} V_{3}}{\epsilon^{3}}+1.83 \cdot N^{2} V_{3} T^{3}
$$

comparable with free $\operatorname{SU}(N / 2) \mathcal{N}=4$ SYM

$$
S_{\text {thermal }}^{\text {free }} \simeq 1.64 \cdot N^{2} V_{3} T^{3}
$$

Examples of GHEE

- If A is not half of $S^{5}\left(\partial A: \theta=\theta_{0}\right.$ at $\left.t=0\right)$

- Entanglement of $\mathrm{SU}(n)$ and $\mathrm{SU}(m)$ subsectors of $\mathrm{SU}(N)$

$$
S_{\mathrm{ent}}=\frac{R^{2} V_{3} \operatorname{Vol}\left(S^{4}\right)}{4 G_{N}^{(10)}} \int_{r_{*}}^{r_{U V}} r^{2} \sin ^{4} \theta(r) \sqrt{1+r^{2} \dot{\theta}^{2}(r)} d r
$$

Examples of GHEE

$$
m=\frac{8}{3 \pi} \cdot(n+m) \int_{0}^{\theta_{0}} d \theta \sin ^{4} \theta
$$

Summery \& Conclusions

- EE of two interacting CFTs \rightarrow volume law divergence (suppressed in massive QFTs)
- Holographically dividing the internal space could address the EE of two interacting CFTs
- GHEE: Minimize a surface in the whole manifold $\mathrm{M}_{q+d+1}=\mathrm{Y}_{d+1}^{A d S} \times \mathrm{X}_{q}$ rather than only the asymptotically AdS part $\mathrm{Y}_{d+1}^{A d S}$

