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Prelude

I In string theory, horizons and Hawking temperatures arise
predominantly from black holes and brane solutions on the
background.

I However, rotating probe branes admit thermal horizons
with temperatures even if there is no black hole in the
bulk. [Takayanagi, Das (2010); Russo, Townsend (2008),...].

I But this analysis has been limited to probes rotating in the
AdS5 ⊗ S5, a noncompact throat and dual to N = 4 SYM.

I Our aim is to extend such analysis to warped Calabi-Yau
throats contained in compact N = 1 string solutions.



Calabi-Yau flux compactification of type IIB theory

The general N = 1 string solution is the CY flux compactification
of IIB theory [Giddings, Kachru, Polchinski (2002)].

I The type IIB action takes the form:
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I The warped line element and self-dual 5-form read as

ds210 = h(y)1/2 gµνdx
µdxν︸ ︷︷ ︸

4D Mink.
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]
.



Figure : Standard flux compactification.

I We will consider a rotating probe brane in this throat
background and study it’s worldvolume horizon and
temperature in the deep IR and far UV regions.



Temperature in the Klebanov-Strassler Throat

Induced metric on the worldvolume of probe D1-brane in KS

In the very deep IR region (η → 0) [Klebanov; Strassler (2000)]:

I The warp factor is constant h0 = a0(gsMα′)2 22/3.

I Only the S3 remains finite whereas the S2 shrinks to zero.

The background metric then is:

ds210 → ε4/3

(2)1/3a
1/2
0 (gsMα′)

(dx2 − dt2)

+(2−1 a
1/2
0 6−1/3)(gsMα′)

{
dη2 + dψ2 + B(η)dφ2

}
,
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Also note: In the deep IR and along the above S3 parametrization
F3 = dC2 = 0, C2 = constant, locally.

The action of the probe D1-brane then is [K, Mosaffa (2015)]:

SD1 ≡ −gs TD1

∫
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.

Note: We are considering slow rotations and so only the leading
terms of the DBI action contribute.



The leading-order brane eqns. of motion are [K, Mosaffa (2015)]:
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Now, consider solutions of the form [K, Mosaffa (2015)]:

ψ(η, t) = ω1 t + ξ1(η) = ω1 t + η + ψ0,

φ(η, t) = ω2 t + ξ2(η) = ω2 t − 2 tan−1
(η

2

)
.



Putting these solutions into the background metric, after a local
coordinate transformation, we get the induced metric on the D1
[K, Mosaffa (2015)]:
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To find the horizon, set in the induced metric gηη = 0, which gives
[K, Mosaffa (2015)]:

gηη(η0) = 0→ η0 =

∣∣∣∣ 2
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This relation tells us the following:

I First: If ω1 = ω2 = 0, this equation has no solutions.

I Next: If ω2 6= 0 and ω1 = 0, then one can see that for
ω2 → small, the horizon appears at very large values of η.

I As ω2 increases, the horizon moves towards smaller values of
η and in the limit of large ω2 it will hit η ≈ 0.

This tells us that the worldvolume black hole nucleates at large
values of η with a horizon that grows by increasing ω.



Temperature in the Klebanov-Tseytlin Throat

Induced metric on the worldvolume of probe D1-brane in KT

At large radii, the KS is well approximated by the KT solution
[Klebanov, Tseytlin (2000)]. Validity rage of the UV solution:

r̂IR � r̂ � r̂UV.

Here one can show that: r̂UV ' 102 ε2/3 and r̂IR ' ε2/3. The UV
solution [Herzog,Klebanov,Ouyang]:
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Taking the same S3 cycle as before, we get [K, Mosaffa (2015)]:
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The action becomes [K, Mosaffa (2015)]:

SD1 = −gs TD1

∫
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The equations of motion take the form [K, Mosaffa (2015)]:
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As before, consider solutions of the form [K, Mosaffa (2015)]:

ψ(r̂ , t) = ω1 t + g(r̂) = ω1 t −
ω1

r̂
+ ψ0,

φ(r̂ , t) = ω2 t + f (r̂) = ω2 t −
ω2

r̂
+ φ0.



Putting the above solutions into the background metric, and
considering a coordinate transformation, gives the induced metric
[K, Mosaffa (2015)]:

ds2ind = −
[
r̂2 − L4 ln(r̂/ε2/3)ω2

]√
L4 ln

(
r̂/ε2/3

) dτ2

+
√

L4 ln
(
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]
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To find the worldvolume horizon we set g r̂ r̂ = 0!



Horizon on the wolrdvolume of probe D1-brane in KT

The worldvolume horizon is described by [K, Mosaffa (2015)]:

g r̂ r̂ = r̂2H − L4 ω2 ln(r̂H/ε
2/3) = 0.

I This equation can have at most two (real positive) zeros.

I The position and number of these zeros depends on the value
of the conserved charge.

I Hence there can be two different situations, depending on the
value of the conserved charge.
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Figure : Plots of g r̂ r̂ = 0 for ω2 = ε4/3/L4 (L), ω2 = 10ε4/3/L4 (R)
[K, Mosaffa (2015)].

I These plots show r̂H ' ε2/3, by which the KT singularity is
approached and the validity range of the UV solution is
violated.
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Figure : Plots of g r̂ r̂ = 0 for ω2 = 50ε4/3/L4 (L), ω2 = 102ε4/3/L4 (R)
[K, Mosaffa (2015)].

I These plots show r̂H → 102ε2/3, by which the KT singularity
is avoided and the validity range of the UV solution is
maintained. Such horizons are of interest!



Temperature on the wolrdvolume of the probe D1-brane in KT

To obtain the Hawking temperature, we Wick-rotate τ into a
Euclidean time, and after a calculation we get [K, Mosaffa (2015)]:

TH =
(g r̂ r̂ )′

4π

∣∣∣∣
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=
r̂H(2r̂2H − L4 ω2)

4π(ωL)2
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I Within the range of the UV solution ε2/3 � r̂ � 102ε2/3 the

worldvolume temperature, TH , is finite and positive definite.

I Away from the mid throat region TH is more or less constant:
TH & L2 ε2/3 for r̂H → 102ε2/3, TH . L2 ε2/3 for r̂H → ε2/3.

I In the mid throat region the TH varies continuously with r̂H .



Temperature in the Klebanov-Witten Throat

The Klebanov-Witten solution
When M = 0, the KT solution joins the Klebanov-Witten (KW)
solution [Klebanov, Witten (1998)]. The solution is:

h =
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4
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Induced metric on the worldvolume of probe D1-brane in KW

Taking the same S3 cycle as before, we obtain the full background
metric as:

ds210 =
r̂2
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(
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)
+
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6
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.

The action becomes [K, Mosaffa (2015)]:

SD1 = −gs TD1

∫
d2ξ L,

L = 1 +
r̂2(φ′)2
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The equations of motion take the form [K, Mosaffa (2015)]:
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.

As before, consider solutions of the form [K, Mosaffa (2015)]:

ψ(r̂ , t) = ω1 t + g(r̂) = ω1 t −
ω1

r̂
+ ψ0,

φ(r̂ , t) = ω2 t + f (r̂) = ω2 t −
ω2

r̂
+ φ0.



Putting the above solutions into the background metric, and
considering a coordinate transformation, gives the induced metric
[K, Mosaffa (2015)]:

ds2ind = −
[
r̂2 − L4 ω2

]
√
L4

dτ2 + L2
[
ω2 + r̂2 − L4 ω2

r̂2(r̂2 − L4 ω2)
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As before, ω2 = ω2
1/9 + ω2

2/6. To find the worldvolume horizon in
KW, we set from this induced metric g r̂ r̂ = 0!



Horizon on the worldvolume of probe D1-brane in KW

The horizon in KW is described by [K, Mosaffa (2015)]:

g r̂ r̂ = r̂2H − L4ω2 = r̂2H − L4
[
ω2
1

9
+
ω2
1

6

]
= 0.

I This eq. has one (real positive) zero, forming a single horizon

I There is no double horizon as logarithmic warping is removed.

I It is also clear that r̂H shrinks/expands linearly with ω, while
suppressed by numerical prefactors 1/9, 1/6.



Temperature on the worldvolume of probe D1-brane in KW

The temperature on the worldvolume of probe D1-brane in KW is
decribed by [K, Mosaffa (2015)]:

TH =
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.

I TH increases/decreases continuously with r̂H , similar to TH of
rotating probes in AdS5 ⊗ S5 throat.

I Note that AdS5 ⊗ S5 extends from r = 0 to r =∞, and so r̂H
and TH can increase to arbitrary large values.

I But in KW TH and r̂H are constrained by the validity range of
the UV solution ε2/3 � r̂ � 102ε2/3 and therefore cannot
increase to arbitrary large values; they remain always finite!



Summary

I We found that worldvolume horizons and temperatures of
expected features form at large radii, far from the bottom of
the throat, where KS is approximated by KT & KW solutions.

I In both KW & KT we found worldvolume horizons with finite
temperatures.

I In KT we found that the temperature is more or less constant.

I In KW we found horizons and temperatures similar to those of
rotating probes in AdS5 × S5, but relatively suppressed, and
constrained by the UV/IR scales of the throat.

Thank you!


