Temperature in Calabi-Yau Throats
 (In collaboration with A.E. Mosaffa)

Dariush Kaviani
IPM school of Particles and Accelerators

Talk prepared for IPM String School and Workshop Feb 28- March 4, 2015

Prelude

- In string theory, horizons and Hawking temperatures arise predominantly from black holes and brane solutions on the background.
- However, rotating probe branes admit thermal horizons with temperatures even if there is no black hole in the bulk. [Takayanagi, Das (2010); Russo, Townsend (2008),...].
- But this analysis has been limited to probes rotating in the $\operatorname{AdS}_{5} \otimes S^{5}$, a noncompact throat and dual to $\underline{\mathcal{N}=4} \mathrm{SYM}$.
- Our aim is to extend such analysis to warped Calabi-Yau throats contained in compact $\mathcal{N}=1$ string solutions.

Calabi-Yau flux compactification of type IIB theory

The general $\mathcal{N}=1$ string solution is the CY flux compactification of IIB theory [Giddings, Kachru, Polchinski (2002)].

- The type IIB action takes the form:

$$
\begin{aligned}
S_{\text {IIB }} & =\frac{1}{2 \kappa_{10}^{2}} \int d^{10} x \sqrt{|g|}\left[\mathcal{R}-\frac{|\partial \tau|^{2}}{2(\operatorname{lm} \tau)^{2}}-\frac{\left|G_{3}\right|^{2}}{12 \operatorname{lm} \tau}-\frac{\left|\tilde{F}_{5}\right|^{2}}{4 \cdot 5!}\right] \\
& +\frac{1}{8 i \kappa_{10}^{2}} \int \frac{C_{4} \wedge G_{3} \wedge G_{3}^{*}}{\operatorname{lm}(\tau)}+S_{\text {loc }}, \quad \text { with } \quad G_{3}=F_{3}-\tau H_{3} .
\end{aligned}
$$

- The warped line element and self-dual 5-form read as

$$
\begin{aligned}
d s_{10}^{2} & =h(y)^{1 / 2} \underbrace{g_{\mu \nu} d x^{\mu} d x^{\nu}}_{4 D \text { Mink. }}+h(y)^{-1 / 2}(\underbrace{d \hat{r}^{2}+\hat{r}^{2} d s_{T^{1,1}}^{2}}_{6 D C Y-\text { cone }}) \\
\tilde{F}_{5} & =\left(1+\star_{10}\right)\left[d \alpha(y) \wedge d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}\right]
\end{aligned}
$$

Figure: Standard flux compactification.

- We will consider a rotating probe brane in this throat background and study it's worldvolume horizon and temperature in the deep IR and far UV regions.

Temperature in the Klebanov-Strassler Throat

Induced metric on the worldvolume of probe D1-brane in KS In the very deep IR region $(\eta \rightarrow 0)$ [Klebanov; Strassler (2000)]:

- The warp factor is constant $h_{0}=a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2} 2^{2 / 3}$.
- Only the S^{3} remains finite whereas the S^{2} shrinks to zero.

The background metric then is:

$$
\begin{aligned}
d s_{10}^{2} \rightarrow & \frac{\epsilon^{4 / 3}}{(2)^{1 / 3} a_{0}^{1 / 2}\left(g_{s} M \alpha^{\prime}\right)}\left(d x^{2}-d t^{2}\right) \\
& +\left(2^{-1} a_{0}^{1 / 2} \sigma^{-1 / 3}\right)\left(g_{s} M \alpha^{\prime}\right)\left\{d \eta^{2}+d \psi^{2}+B(\eta) d \phi^{2}\right\} \\
B(\eta)= & 1+\eta^{2} / 4
\end{aligned}
$$

Also note: In the deep IR and along the above S^{3} parametrization $F_{3}=d C_{2}=0, C_{2}=$ constant, locally.

The action of the probe D1-brane then is [K, Mosaffa (2015)]:

$$
\begin{aligned}
S_{D 1} \equiv & -g_{s} T_{D 1} \int d^{2} \xi L, \\
L= & -\frac{\epsilon^{4 / 3}}{2(12)^{1 / 3}}\left[1+\frac{1}{2} B(\eta)\left(\phi^{\prime}\right)^{2}-\frac{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2} B(\eta)}{2\left(24 \epsilon^{4}\right)^{1 / 3}} \dot{\phi}^{2}\right. \\
& \left.+\frac{1}{2}\left(\psi^{\prime}\right)^{2}-\frac{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2}}{2\left(24 \epsilon^{4}\right)^{1 / 3}} \dot{\psi}^{2}\right] .
\end{aligned}
$$

Note: We are considering slow rotations and so only the leading terms of the DBI action contribute.

The leading-order brane eqns. of motion are [K, Mosaffa (2015)]:

$$
\begin{aligned}
\frac{\partial}{\partial \eta}\left[B(\eta) \phi^{\prime}(\eta, t)\right] & =\frac{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2}}{\left(24 \epsilon^{4}\right)^{1 / 3}} \frac{\partial}{\partial t}[B(\eta) \dot{\phi}(\eta, t)] \\
\frac{\partial}{\partial \eta}\left[\psi^{\prime}(\eta, t)\right] & =\frac{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2}}{\left(24 \epsilon^{4}\right)^{1 / 3}} \frac{\partial}{\partial t}[\dot{\psi}(\eta, t)]
\end{aligned}
$$

Now, consider solutions of the form [K, Mosaffa (2015)]:

$$
\begin{aligned}
\psi(\eta, t) & =\omega_{1} t+\xi_{1}(\eta)=\omega_{1} t+\eta+\psi_{0} \\
\phi(\eta, t) & =\omega_{2} t+\xi_{2}(\eta)=\omega_{2} t-2 \tan ^{-1}\left(\frac{\eta}{2}\right)
\end{aligned}
$$

Putting these solutions into the background metric, after a local coordinate transformation, we get the induced metric on the D1 [K, Mosaffa (2015)]:

$$
\begin{aligned}
d s_{\text {ind }}^{2}= & -\frac{a_{0}^{1 / 2}\left(g_{s} M \alpha^{\prime}\right) \Omega(\eta)}{2 \cdot 6^{1 / 3}} d \tau^{2} \\
& +\frac{a_{0}^{1 / 2}\left(g_{s} M \alpha^{\prime}\right)}{2 \cdot 6^{1 / 3} B(\eta) \Omega(\eta)}\left\{(1+2 B(\eta))\left[\frac{a_{0}^{1 / 2}\left(g_{s} M \alpha^{\prime}\right) \Omega(\eta)}{2 \cdot 6^{1 / 3}}\right]\right. \\
& \left.+B(\eta) \Delta \omega^{2}\right\} d \eta^{2}
\end{aligned}
$$

$$
\Omega(\eta)=\frac{\left(24 \epsilon^{4}\right)^{1 / 3}}{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2}}-\left(\omega_{1}^{2}+B(\eta) \omega_{2}^{2}\right), \quad \Delta \omega=\omega_{2}-\omega_{1}
$$

To find the horizon, set in the induced metric $g^{\eta \eta}=0$, which gives [K, Mosaffa (2015)]:

$$
g^{\eta \eta}\left(\eta_{0}\right)=0 \rightarrow \eta_{0}=\left|\frac{2}{\omega_{2}}\right| \sqrt{\frac{\left(24 \epsilon^{4}\right)^{1 / 3}}{a_{0}\left(g_{s} M \alpha^{\prime}\right)^{2}}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}
$$

This relation tells us the following:

- First: If $\omega_{1}=\omega_{2}=0$, this equation has no solutions.
- Next: If $\omega_{2} \neq 0$ and $\omega_{1}=0$, then one can see that for $\omega_{2} \rightarrow$ small, the horizon appears at very large values of η.
- As ω_{2} increases, the horizon moves towards smaller values of η and in the limit of large ω_{2} it will hit $\eta \approx 0$.

This tells us that the worldvolume black hole nucleates at large values of η with a horizon that grows by increasing ω.

Temperature in the Klebanov-Tseytlin Throat

Induced metric on the worldvolume of probe D1-brane in KT At large radii, the KS is well approximated by the KT solution [Klebanov, Tseytlin (2000)]. Validity rage of the UV solution:

$$
\hat{r}_{\mathrm{R}} \ll \hat{r} \ll \hat{r} \mathrm{UV} .
$$

Here one can show that: $\hat{r}_{U V} \simeq 10^{2} \epsilon^{2 / 3}$ and $\hat{\jmath}_{\mathbb{R}} \simeq \epsilon^{2 / 3}$. The UV solution [Herzog,Klebanov, Ouyang]:

$$
\begin{array}{r}
h(\hat{r})=\frac{L^{4}}{\hat{r}^{4}} \ln \left(\hat{r} / \epsilon^{2 / 3}\right), \quad L^{4}=\frac{81\left(g_{s} M \alpha^{\prime}\right)^{2}}{8}, \\
d s_{10}^{2}=\frac{\hat{r}^{2}}{L^{2} \sqrt{\ln \left(\hat{r} / \epsilon^{2 / 3}\right)}}\left(d x^{2}-d t^{2}\right)+\frac{L^{2} \sqrt{\ln \left(\hat{r} / \epsilon^{2 / 3}\right)}}{\hat{r}^{2}} d \hat{r}^{2} \\
+\frac{L^{2}}{\hat{r}^{2}} \sqrt{\ln \left(\hat{r} / \epsilon^{2 / 3}\right)} d s_{T^{1,1}}^{2} .
\end{array}
$$

Taking the same S^{3} cycle as before, we get [K, Mosaffa (2015)]:

$$
\begin{aligned}
d s_{10}^{2}= & \frac{\hat{r}^{2}}{L^{2} \sqrt{\ln \left(\hat{r} / \epsilon^{2 / 3}\right)}}\left(d x^{2}-d t^{2}\right) \\
& +\frac{L^{2} \sqrt{\ln \left(\hat{r} / \epsilon^{2 / 3}\right)}}{\hat{r}^{2}}\left(d \hat{r}^{2}+\frac{\hat{r}^{2}}{6} d \phi^{2}+\frac{\hat{r}^{2}}{9} d \psi^{2}\right) .
\end{aligned}
$$

The action becomes [K, Mosaffa (2015)]:

$$
\begin{aligned}
S_{D 1}= & -g_{s} T_{D 1} \int d^{2} \xi L, \\
L= & 1+\frac{\hat{r}^{2}\left(\phi^{\prime}\right)^{2}}{12}-\frac{L^{4}}{12 \hat{r}^{2}} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \dot{\phi}^{2} \\
& +\frac{\hat{r}^{2}\left(\psi^{\prime}\right)^{2}}{18}-\frac{L^{4}}{18 \hat{r}^{2}} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \dot{\psi}^{2} .
\end{aligned}
$$

The equations of motion take the form [K, Mosaffa (2015)]:

$$
\begin{aligned}
\frac{\partial}{\partial \hat{r}}\left[\frac{\hat{r}^{2} \psi^{\prime}(\hat{r}, t)}{9}\right] & =\frac{\partial}{\partial t}\left[\frac{L^{4}}{9 \hat{r}^{2}} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \dot{\psi}(\hat{r}, t)\right] \\
\frac{\partial}{\partial \hat{r}}\left[\frac{\eta^{2} \phi^{\prime}(\hat{r}, t)}{6}\right] & =\frac{\partial}{\partial t}\left[\frac{L^{4}}{6 \hat{r}^{2}} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \dot{\phi}(\hat{r}, t)\right]
\end{aligned}
$$

As before, consider solutions of the form [K, Mosaffa (2015)]:

$$
\begin{aligned}
& \psi(\hat{r}, t)=\omega_{1} t+g(\hat{r})=\omega_{1} t-\frac{\omega_{1}}{\hat{r}}+\psi_{0} \\
& \phi(\hat{r}, t)=\omega_{2} t+f(\hat{r})=\omega_{2} t-\frac{\omega_{2}}{\hat{r}}+\phi_{0} .
\end{aligned}
$$

Putting the above solutions into the background metric, and considering a coordinate transformation, gives the induced metric [K, Mosaffa (2015)]:

$$
\begin{aligned}
d s_{\text {ind }}^{2}= & -\frac{\left[\hat{r}^{2}-L^{4} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \bar{\omega}^{2}\right]}{\sqrt{L^{4} \ln \left(\hat{r} / \epsilon^{2 / 3}\right)}} d \tau^{2} \\
& +\sqrt{L^{4} \ln \left(\hat{r} / \epsilon^{2 / 3}\right)}\left[\frac{\bar{\omega}^{2}+\hat{r}^{2}-L^{4} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \bar{\omega}^{2}}{\hat{r}^{2}\left(\hat{r}^{2}-L^{4} \ln \left(\hat{r} / \epsilon^{2 / 3}\right) \bar{\omega}^{2}\right)}\right] d \hat{r}^{2} .
\end{aligned}
$$

To find the worldvolume horizon we set $g^{\hat{r} \hat{r}}=0$!

Horizon on the wolrdvolume of probe D1-brane in KT

The worldvolume horizon is described by [K, Mosaffa (2015)]:

$$
g^{\hat{r} \hat{r}}=\hat{r}_{H}^{2}-L^{4} \bar{\omega}^{2} \ln \left(\hat{r}_{H} / \epsilon^{2 / 3}\right)=0
$$

- This equation can have at most two (real positive) zeros.
- The position and number of these zeros depends on the value of the conserved charge.
- Hence there can be two different situations, depending on the value of the conserved charge.

Figure: Plots of $g^{\hat{r} \hat{r}}=0$ for $\bar{\omega}^{2}=\epsilon^{4 / 3} / L^{4}(\mathrm{~L}), \bar{\omega}^{2}=10 \epsilon^{4 / 3} / L^{4}(\mathrm{R})$ [K, Mosaffa (2015)].

- These plots show $\hat{r}_{H} \simeq \epsilon^{2 / 3}$, by which the KT singularity is approached and the validity range of the UV solution is violated.

Figure: Plots of $g^{\hat{r} \hat{r}}=0$ for $\bar{\omega}^{2}=50 \epsilon^{4 / 3} / L^{4}(\mathrm{~L}), \bar{\omega}^{2}=10^{2} \epsilon^{4 / 3} / L^{4}(\mathrm{R})$ [K, Mosaffa (2015)].

- These plots show $\hat{r}_{H} \rightarrow 10^{2} \epsilon^{2 / 3}$, by which the KT singularity is avoided and the validity range of the UV solution is maintained. Such horizons are of interest!

Temperature on the wolrdvolume of the probe D1-brane in KT

To obtain the Hawking temperature, we Wick-rotate τ into a Euclidean time, and after a calculation we get [K, Mosaffa (2015)]:

$$
T_{H}=\left.\frac{\left(g^{\hat{r} \hat{r}}\right)^{\prime}}{4 \pi}\right|_{\hat{r}=\hat{r}_{H}}=\frac{\hat{r}_{H}\left(2 \hat{r}_{H}^{2}-L^{4} \bar{\omega}^{2}\right)}{4 \pi(\bar{\omega} L)^{2} \sqrt{\ln \left(\hat{r}_{H} / \epsilon^{2 / 3}\right)}}
$$

- Within the range of the UV solution $\epsilon^{2 / 3} \ll \hat{r} \ll 10^{2} \epsilon^{2 / 3}$ the worldvolume temperature, T_{H}, is finite and positive definite.
- Away from the mid throat region T_{H} is more or less constant: $T_{H} \gtrsim L^{2} \epsilon^{2 / 3}$ for $\hat{r}_{H} \rightarrow 10^{2} \epsilon^{2 / 3}, T_{H} \lesssim L^{2} \epsilon^{2 / 3}$ for $\hat{r}_{H} \rightarrow \epsilon^{2 / 3}$.
- In the mid throat region the T_{H} varies continuously with \hat{r}_{H}.

Temperature in the Klebanov-Witten Throat

The Klebanov-Witten solution
When $M=0$, the KT solution joins the Klebanov-Witten (KW) solution [Klebanov, Witten (1998)]. The solution is:

$$
\begin{gathered}
h=\frac{L^{4}}{\hat{r}^{4}}, \quad \text { and } \quad L^{4} \equiv \frac{27 \pi}{4} g_{s} N\left(\alpha^{\prime}\right)^{2}, \\
d s^{2}=\frac{\hat{r}^{2}}{L^{2}}\left(d x^{2}-d t^{2}\right)+\frac{L^{2}}{\hat{r}^{2}} d \hat{r}^{2}+\frac{L^{2}}{\hat{r}^{2}} d s_{T^{1,1}}^{2} .
\end{gathered}
$$

Induced metric on the worldvolume of probe D1-brane in KW Taking the same S^{3} cycle as before, we obtain the full background metric as:

$$
d s_{10}^{2}=\frac{\hat{r}^{2}}{L^{2}}\left(d x^{2}-d t^{2}\right)+\frac{L^{2}}{\hat{r}^{2}}\left(d \hat{r}^{2}+\frac{\hat{r}^{2}}{6} d \phi^{2}+\frac{\hat{r}^{2}}{9} d \psi^{2}\right)
$$

The action becomes [K, Mosaffa (2015)]:

$$
\begin{aligned}
S_{D 1} & =-g_{s} T_{D 1} \int d^{2} \xi L \\
L & =1+\frac{\hat{r}^{2}\left(\phi^{\prime}\right)^{2}}{12}-\frac{L^{4}}{12 \hat{r}^{2}} \dot{\phi}^{2}+\frac{\hat{r}^{2}\left(\psi^{\prime}\right)^{2}}{18}-\frac{L^{4}}{18 \hat{r}^{2}} \dot{\psi}^{2} .
\end{aligned}
$$

The equations of motion take the form [K, Mosaffa (2015)]:

$$
\begin{aligned}
\frac{\partial}{\partial \hat{r}}\left[\frac{\hat{r}^{2} \psi^{\prime}(\hat{r}, t)}{9}\right] & =\frac{\partial}{\partial t}\left[\frac{L^{4}}{9 \hat{r}^{2}} \dot{\psi}(\hat{r}, t)\right] \\
\frac{\partial}{\partial \hat{r}}\left[\frac{\eta^{2} \phi^{\prime}(\hat{r}, t)}{6}\right] & =\frac{\partial}{\partial t}\left[\frac{L^{4}}{6 \hat{r}^{2}} \dot{\phi}(\hat{r}, t)\right] .
\end{aligned}
$$

As before, consider solutions of the form [K, Mosaffa (2015)]:

$$
\begin{aligned}
& \psi(\hat{r}, t)=\omega_{1} t+g(\hat{r})=\omega_{1} t-\frac{\omega_{1}}{\hat{r}}+\psi_{0}, \\
& \phi(\hat{r}, t)=\omega_{2} t+f(\hat{r})=\omega_{2} t-\frac{\omega_{2}}{\hat{r}}+\phi_{0} .
\end{aligned}
$$

Putting the above solutions into the background metric, and considering a coordinate transformation, gives the induced metric [K, Mosaffa (2015)]:

$$
d s_{i n d}^{2}=-\frac{\left[\hat{r}^{2}-L^{4} \bar{\omega}^{2}\right]}{\sqrt{L^{4}}} d \tau^{2}+L^{2}\left[\frac{\bar{\omega}^{2}+\hat{r}^{2}-L^{4} \bar{\omega}^{2}}{\hat{r}^{2}\left(\hat{r}^{2}-L^{4} \bar{\omega}^{2}\right)}\right] d \hat{r}^{2} .
$$

As before, $\bar{\omega}^{2}=\omega_{1}^{2} / 9+\omega_{2}^{2} / 6$. To find the worldvolume horizon in KW, we set from this induced metric $g^{\hat{\gamma} \hat{r}}=0$!

Horizon on the worldvolume of probe D1-brane in KW

The horizon in KW is described by [K, Mosaffa (2015)]:

$$
g^{\hat{r} \hat{r}}=\hat{r}_{H}^{2}-L^{4} \bar{\omega}^{2}=\hat{r}_{H}^{2}-L^{4}\left[\frac{\omega_{1}^{2}}{9}+\frac{\omega_{1}^{2}}{6}\right]=0 .
$$

- This eq. has one (real positive) zero, forming a single horizon
- There is no double horizon as logarithmic warping is removed.
- It is also clear that \hat{r}_{H} shrinks/expands linearly with $\bar{\omega}$, while suppressed by numerical prefactors $1 / 9,1 / 6$.

Temperature on the worldvolume of probe D1-brane in KW

The temperature on the worldvolume of probe D1-brane in KW is decribed by [K, Mosaffa (2015)]:

$$
T_{\mathrm{H}}=\left.\frac{\left(g^{\hat{r} \hat{r}}\right)^{\prime}}{4 \pi}\right|_{\hat{r}=\hat{r}_{\mathrm{H}}}=\frac{\hat{r}_{H}}{2 \pi}=\frac{L^{2}}{2 \pi} \sqrt{\frac{\omega_{1}^{2}}{9}+\frac{\omega_{2}^{2}}{6}} .
$$

- T_{H} increases/decreases continuously with \hat{r}_{H}, similar to T_{H} of rotating probes in $A d S_{5} \otimes S^{5}$ throat.
- Note that $A d S_{5} \otimes S^{5}$ extends from $r=0$ to $r=\infty$, and so \hat{r}_{H} and T_{H} can increase to arbitrary large values.
- But in KW T_{H} and \hat{r}_{H} are constrained by the validity range of the UV solution $\epsilon^{2 / 3} \ll \hat{r} \ll 10^{2} \epsilon^{2 / 3}$ and therefore cannot increase to arbitrary large values; they remain always finite!

Summary

- We found that worldvolume horizons and temperatures of expected features form at large radii, far from the bottom of the throat, where KS is approximated by KT \& KW solutions.
- In both KW \& KT we found worldvolume horizons with finite temperatures.
- In KT we found that the temperature is more or less constant.
- In KW we found horizons and temperatures similar to those of rotating probes in $\operatorname{Ad} S_{5} \times S^{5}$, but relatively suppressed, and constrained by the UV/IR scales of the throat.

Thank you!

