Entanglement and Symmetry

Amin Faraji Astaneh
In Collabration with Gary Gibbons and Sergey Solodukhin

IPM
hep-th/1407.4719

March 2, 2015

Overview

(1) EE in QM
(2) EE in QFT
(3) Holographic Entanglement Entropy
(4) What surface maximizes EE?

EE in QM

- Consider a quantum mechanical system in a pure ground state which is described by $|\psi\rangle(\rho=|\psi\rangle\langle\psi|)$.

Figure : Note: Σ is imaginary!

- Reduced density operator:

$$
\rho_{A}=\operatorname{Tr}_{B} \rho=\operatorname{Tr}_{B}|\psi\rangle\langle\psi| .
$$

Then the EE is

$$
S_{E E}(A)=-\operatorname{Tr} \rho_{A} \log \rho_{A} .
$$

EE in QFT

$$
\begin{gathered}
S_{E E}(A) \geq 0 \\
S_{E E}(A)=S_{E E}\left(A^{c}\right)
\end{gathered}
$$

Area law [Srednicki (03)]

$$
S_{E E} \sim \frac{\mathcal{A}(\Sigma)}{\epsilon^{d-2}} .
$$

Holographic EE

Figure: Ryu-Takayanagi's (RT) proposal (06)

$$
S_{H E}(\Sigma)=\operatorname{Min} \frac{\mathcal{A}\left(\mathcal{H}_{\Sigma}\right)}{4 G_{N}^{(d+1)}}
$$

Holographic EE for a $1+1$ dimensional CFT

In the case of a $1+1$ dimensional CFT we should calculate the geodesic length, γ, in $A d S_{3}$ described by

$$
d s^{2}=\frac{R^{2}}{r^{2}}\left(-d t^{2}+d x^{2}+d r^{2}\right)
$$

then using RT proposal the EE reads

$$
S_{H E}(\gamma)=\frac{R}{2 G_{N}} \log \frac{\ell}{\epsilon}=\frac{c}{3} \log \frac{\ell}{\epsilon} .
$$

What surface maximizes EE ?

To give an answer we used the RT prescription in an asymptotic form, this leads to C. R. Graham, E. Witten (99), A.F.A, G.Gibbons, S.Solodukhin(14)

$$
d v_{\mathcal{H}_{\Sigma}}=r^{-d+1}\left[1-\frac{1}{2}\left(\frac{d-3}{(d-2)^{2}}(\operatorname{Tr} K)^{2}+\operatorname{Tr} P\right) r^{2}+\cdots\right] d v_{\Sigma} d r
$$

where,

$$
P_{\alpha \beta}=\frac{1}{d-2}\left(R_{\alpha \beta}-\frac{R}{2(d-1)} g_{\alpha \beta}\right)
$$

Entanglement between Math and Physics!

$$
\begin{aligned}
S_{H E}(\Sigma) & =\frac{A\left(\mathcal{H}_{\Sigma}\right)}{4 G_{N}}=\frac{1}{4 G_{N}} \frac{A(\Sigma)}{(d-2) \epsilon^{d-2}}+ \\
& +\frac{1}{4 G_{N}} \frac{1}{2(d-2)(d-4) \epsilon^{d-4}} \int_{\Sigma} d v_{\Sigma} \\
& {\left[R_{a a}-\frac{d}{2(d-1)} R-\frac{d-3}{d-2}(\operatorname{Tr} K)^{2}\right] . }
\end{aligned}
$$

The question is: what surface minimizes the Willmore functional?

$$
W(\Sigma)=\frac{1}{4} \int_{\Sigma}(\operatorname{Tr} K)^{2}
$$

Max of $S_{E E}(\Sigma)$ when $\mathcal{A}(\Sigma)$ is fixed $\sim \operatorname{Min}$ of $W(\Sigma)$.

Formulation of the problem

Consider a field theory defined on the Minkowski spacetime. Let us also consider that the area of the entangling region $\mathcal{A}(\Sigma)$ is fixed. We are looking for

- The miximizer of the entropy (minimizer of the Willmore functional), Σ_{0}, when topology is fixed such that

$$
S(\Sigma) \leq S\left(\Sigma_{0}\right) \text { topology is fixed }
$$

- The global maximizer of the entropy (minimizer of the Willmore functional), Σ_{m}, for any surface Σ of same area A and arbitrary topology in any dimension

$$
S(\Sigma) \leq S\left(\Sigma_{m}\right) \text { any topology }
$$

Our observation/conjecture is:

A.F.A, G.Gibbons, S.Solodukhin(14)
first) Round sphere, S^{d-2}, is the entropy maximizer in its own topology class.
then) Round sphere is the entropy global maximizer for other hyper surfaces with the same area but different topology.
Lets check it in $4 D$.

Entropy maximizer in $4 D$ is S^{2}

$$
W(\Sigma)=\frac{1}{4} \int_{\Sigma}(\operatorname{Tr} K)^{2}
$$

Doing some rewriting we get

$$
\begin{gathered}
\frac{1}{2}(\operatorname{Tr} K)^{2}=R_{\Sigma}+K_{\Sigma} \\
R_{\Sigma}=(\operatorname{Tr} K)^{2}-\operatorname{Tr} K^{2}, K_{\Sigma}=\operatorname{Tr} K^{2}-\frac{1}{2}(\operatorname{Tr} K)^{2}
\end{gathered}
$$

but

$$
K_{\Sigma}=\left(K_{i j}-\frac{1}{2} \gamma_{i j} \operatorname{Tr} K\right)^{2}
$$

demanding $K_{\Sigma}=0 \rightarrow K_{i j}=\frac{1}{2} \gamma_{i j} \operatorname{Tr} K$. Using the Gauss-Codazzi equations

$$
\nabla^{j} K_{i j}=\nabla_{i} \operatorname{Tr} K \rightarrow \operatorname{Tr} K=\text { const } .
$$

$\therefore R_{\Sigma}=$ const. $\geq 0 \rightarrow \Sigma_{0} \sim S^{2}$.

Maximizers of entropy, Willmore conjecture

We Proved (in 4D) and Conjectured (in higher D) that the Spheres are the global maximizers of the EE.

$$
\begin{aligned}
& g=0 \rightarrow W(\Sigma) \geq W\left(S^{2}\right)=4 \pi \\
& g=1 \rightarrow W(\Sigma) \geq W\left(\mathbf{T}_{\text {cliff }}^{2}\right)=2 \pi^{2}
\end{aligned}
$$

In $g=1$ class Clifford torus is the entropy maximizer.

$$
S_{E E}\left(\Sigma_{g=1}\right) \leq S_{E E}\left(\mathbf{T}_{C l i f f}^{2}\right)
$$

Renormalized Willmore functional in higher D

Lets define the renormalized Willmore energy as

$$
\widehat{W}\left(\Sigma_{d-2}\right)=W\left(\Sigma_{d-2}\right) / A^{\frac{d-4}{d-2}}, \quad W\left(\Sigma_{d-2}\right)=\frac{1}{4} \int_{\Sigma_{d-2}}(\operatorname{Tr} K)^{2} .
$$

For example for the round sphere

$$
\widehat{W}\left(S^{d-2}\right)=\frac{W\left(S^{d-2}\right)}{\left[A\left(S^{d-2}\right)\right]^{\frac{d-4}{d-2}}}=\frac{(d-2)^{2}}{4}\left(\frac{\pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)}\right)^{\frac{2}{d-2}} .
$$

Who wins the game?

Maximizers of entropy, Ellipsoid in Higher D

Consider the ellipsoid E^{d-2}

$$
\frac{x_{1}^{2}}{a_{1}^{2}}+\ldots+\frac{x_{d-1}^{2}}{a_{d-1}^{2}}=1,\left(a_{1}=a_{2}=\cdots=a_{d-2}=a\right) \neq\left(a_{d-1}=b\right)
$$

The desired quantity is

$$
\begin{gather*}
\widehat{W}_{r}(e)=\frac{\widehat{W}\left(E^{d-2}\right)}{\widehat{W}\left(S^{d-2}\right)}, e=\sqrt{1-\frac{a^{2}}{b^{2}}} . \\
W\left(E^{d-2}\right)= \\
\frac{1}{4} \frac{2 \pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} a^{d-4}\left(1-e^{2}\right)^{\frac{d-4}{2}}\left[{ }_{2} F_{1}\left(\frac{d-2}{2}, \frac{d-6}{2}, \frac{d-1}{2}, e^{2}\right)\right. \tag{1}\\
+(d-3)^{2}{ }_{2} F_{1}\left(\frac{d-2}{2}, \frac{d-2}{2}, \frac{d-1}{2}, e^{2}\right) \\
\left.+2(d-3){ }_{2} F_{1}\left(\frac{d-2}{2}, \frac{d-4}{2}, \frac{d-1}{2}, e^{2}\right)\right] .
\end{gather*}
$$

Maximizers of entropy, Ellipsoid in Higher D

Maximizers of entropy, $S^{m} \times S^{n}$ geometry in Higher D

Let us consider a toric geometry in higher dimensions

$$
\widehat{W}_{r}(x)=\frac{\widehat{W}\left(S^{m} \times S^{n}\right)}{\widehat{W}\left(S^{m+n}\right)}, x=\frac{r}{R} .
$$

What happens?

Maximizers of entropy, $S^{m} \times S^{n}$ geometry in Higher D

As a generalization of a torus, for $S^{m} \times S^{n}$ geometries we have

- $d=m+n+2=4$

$\mathrm{d}=4$	$S^{1} \times S^{1}$
$x_{\min }$	0.707
$\widehat{W}_{r, \min }$	1.571

- $d=m+n+2=5$

$\mathrm{d}=5$	$S^{2} \times S^{1}$	$S^{1} \times S^{2}$
$x_{\min }$	0.886	0.816
$\widehat{W}_{r, \min }$	1.391	1.333

- $d=m+n+2=6$

$\mathrm{d}=6$	$S^{3} \times S^{1}$	$S^{2} \times S^{2}$	$S^{1} \times S^{3}$
$x_{\text {min }}$	0.968	1	1
$\widehat{W}_{r, \text { min }}$	1.324	1.237	1.116

- $d=m+n+2=7$

$\mathrm{d}=7$	$S^{4} \times S^{1}$	$S^{3} \times S^{2}$	$S^{2} \times S^{3}$	$S^{1} \times S^{4}$
$x_{\min }$	0.9987	1	1	1
$\widehat{W}_{r, \min }$	1.289	1.226	1.152	1.076

Conclusion

Most symmetric is the most entropic!

