Entanglement and Symmetry

Amin Faraji Astaneh

In Collabration with Gary Gibbons and Sergey Solodukhin

IPM

hep-th/1407.4719

March 2, 2015

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

March 2, 2015 1 / 18

Overview

Object States and S

What surface maximizes EE?

(日) (同) (三) (三)

EE in QM

• Consider a quantum mechanical system in a pure ground state which is described by $|\psi\rangle$ ($\rho = |\psi\rangle\langle\psi|$).

Figure : Note: Σ is imaginary!

• Reduced density operator:

$$\rho_A = \operatorname{Tr}_B \rho = \operatorname{Tr}_B |\psi\rangle \langle \psi|.$$

Then the EE is

$$S_{EE}(A) = -\operatorname{Tr}\rho_A \log \rho_A$$
.

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

March 2, 2015 3 / 18

EE in QFT

$$S_{EE}(A) \ge 0$$
 . $S_{EE}(A) = S_{EE}(A^c)$.

. . .

Area law [Srednicki (03)]

$$S_{EE} \sim \frac{\mathcal{A}(\Sigma)}{\epsilon^{d-2}} \,.$$

Amin Faraji Astaneh In Collabration with Gar

・ロト ・四ト ・ヨト ・ヨト

Holographic EE

Figure : Ryu-Takayanagi's (RT) proposal (06)

$$S_{HE}(\Sigma) = \operatorname{Min} \frac{\mathcal{A}(\mathcal{H}_{\Sigma})}{4G_N^{(d+1)}},$$

Amin Faraji Astaneh In Collabration with Gar

March 2, 2015 5 / 18

3

イロト イポト イヨト イヨト

Holographic EE for a 1+1 dimensional CFT

In the case of a 1+1 dimensional CFT we should calculate the geodesic length, $\gamma,$ in AdS_3 described by

$$ds^{2} = \frac{R^{2}}{r^{2}}(-dt^{2} + dx^{2} + dr^{2}),$$

then using RT proposal the EE reads

$$S_{HE}(\gamma) = \frac{R}{2G_N} \log \frac{\ell}{\epsilon} = \frac{c}{3} \log \frac{\ell}{\epsilon}.$$

Amin Faraji Astaneh In Collabration with Gar

What surface maximizes EE?

To give an answer we used the RT prescription in an asymptotic form, this leads to C. R. Graham, E. Witten (99), A.F.A, G.Gibbons, S.Solodukhin(14)

$$dv_{\mathcal{H}_{\Sigma}} = r^{-d+1} \left[1 - \frac{1}{2} \left(\frac{d-3}{(d-2)^2} (\operatorname{Tr} K)^2 + \operatorname{Tr} P \right) r^2 + \cdots \right] dv_{\Sigma} dr ,$$

where,

$$P_{\alpha\beta} = \frac{1}{d-2} \left(R_{\alpha\beta} - \frac{R}{2(d-1)} g_{\alpha\beta} \right).$$

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

Entanglement between Math and Physics!

$$S_{HE}(\Sigma) = \frac{A(\mathcal{H}_{\Sigma})}{4G_N} = \frac{1}{4G_N} \frac{A(\Sigma)}{(d-2)\epsilon^{d-2}} + \frac{1}{4G_N} \frac{1}{2(d-2)(d-4)\epsilon^{d-4}} \int_{\Sigma} dv_{\Sigma} \left[R_{aa} - \frac{d}{2(d-1)}R - \frac{d-3}{d-2}(\operatorname{Tr} K)^2 \right]$$

The question is: what surface minimizes the Willmore functional?

$$W(\Sigma) = \frac{1}{4} \int_{\Sigma} (\operatorname{Tr} K)^2,$$

Max of $S_{EE}(\Sigma)$ when $\mathcal{A}(\Sigma)$ is fixed ~ Min of $W(\Sigma)$.

Amin Faraji Astaneh In Collabration with Gar

٠

・ロン ・四 ・ ・ ヨン ・ ヨン

Formulation of the problem

Consider a field theory defined on the Minkowski spacetime. Let us also consider that the area of the entangling region $\mathcal{A}(\Sigma)$ is fixed. We are looking for

• The miximizer of the entropy (minimizer of the Willmore functional), Σ_0 , when topology is fixed such that

 $S(\Sigma) \leq S(\Sigma_0)$ topology is fixed

• The global maximizer of the entropy (minimizer of the Willmore functional), Σ_m , for any surface Σ of same area A and arbitrary topology in any dimension

 $S(\Sigma) \leq S(\Sigma_m)$ any topology

Amin Faraji Astaneh In Collabration with Gar

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Our observation/conjecture is:

A.F.A, G.Gibbons, S.Solodukhin(14)

- first) Round sphere, S^{d-2} , is the entropy maximizer in its own topology class.
- then) Round sphere is the entropy global maximizer for other hyper surfaces with the same area but different topology.

Lets check it in 4D.

Entropy maximizer in 4D is S^2

$$W(\Sigma) = \frac{1}{4} \int_{\Sigma} (\operatorname{Tr} K)^2.$$

Doing some rewriting we get

$$\frac{1}{2} (\,\mathrm{Tr}K)^2 = R_{\Sigma} + K_{\Sigma} \,,$$
$$R_{\Sigma} = (\,\mathrm{Tr}K)^2 - \,\mathrm{Tr}K^2 \,, K_{\Sigma} = \,\mathrm{Tr}K^2 - \frac{1}{2} (\,\mathrm{Tr}K)^2 \,,$$

but

$$K_{\Sigma} = (K_{ij} - \frac{1}{2}\gamma_{ij}\operatorname{Tr} K)^2,$$

demanding $K_{\Sigma}=0 \to K_{ij}=\frac{1}{2}\gamma_{ij}\,{\rm Tr} K$. Using the Gauss-Codazzi equations

$$\nabla^j K_{ij} = \nabla_i \operatorname{Tr} K \to \operatorname{Tr} K = const.$$

 $\therefore R_{\Sigma} = const. \ge 0 \to \Sigma_0 \sim S^2.$

Amin Faraji Astaneh In Collabration with Gar

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Maximizers of entropy, Willmore conjecture

We Proved (in 4D) and Conjectured (in higher D) that the Spheres are the global maximizers of the EE.

$$g = 0 \to W(\Sigma) \ge W(S^2) = 4\pi$$
$$g = 1 \to W(\Sigma) \ge W(\mathbf{T}_{cliff}^2) = 2\pi^2$$

In g = 1 class Clifford torus is the entropy maximizer.

 $S_{EE}(\Sigma_{g=1}) \le S_{EE}(\mathsf{T}^2_{Cliff})$

Amin Faraji Astaneh In Collabration with Gar

March 2, 2015 12 / 18

Renormalized Willmore functional in higher D

Lets define the renormalized Willmore energy as

$$\widehat{W}(\Sigma_{d-2}) = W(\Sigma_{d-2}) / A^{\frac{d-4}{d-2}}, \quad W(\Sigma_{d-2}) = \frac{1}{4} \int_{\Sigma_{d-2}} (\operatorname{Tr} K)^2.$$

For example for the round sphere

$$\widehat{W}(S^{d-2}) = \frac{W(S^{d-2})}{[A(S^{d-2})]^{\frac{d-4}{d-2}}} = \frac{(d-2)^2}{4} \left(\frac{\pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)}\right)^{\frac{2}{d-2}}$$

Who wins the game?

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

March 2, 2015 13 / 18

٠

Maximizers of entropy, Ellipsoid in Higher D

Consider the ellipsoid E^{d-2}

$$\frac{x_1^2}{a_1^2} + \dots + \frac{x_{d-1}^2}{a_{d-1}^2} = 1, (a_1 = a_2 = \dots = a_{d-2} = a) \neq (a_{d-1} = b).$$

The desired quantity is

$$\widehat{W}_r(e) = \frac{\widehat{W}(E^{d-2})}{\widehat{W}(S^{d-2})}, e = \sqrt{1 - \frac{a^2}{b^2}}.$$

$$W(E^{d-2}) = \frac{1}{4} \frac{2\pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} a^{d-4} (1-e^2)^{\frac{d-4}{2}} \left[{}_2F_1\left(\frac{d-2}{2}, \frac{d-6}{2}, \frac{d-1}{2}, e^2\right) + (d-3)^2 {}_2F_1\left(\frac{d-2}{2}, \frac{d-2}{2}, \frac{d-1}{2}, e^2\right) + 2(d-3) {}_2F_1\left(\frac{d-2}{2}, \frac{d-4}{2}, \frac{d-1}{2}, e^2\right) \right].$$

$$(1)$$

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

Maximizers of entropy, Ellipsoid in Higher D

Maximizers of entropy, $S^m \times S^n$ geometry in Higher D

Let us consider a toric geometry in higher dimensions

$$\widehat{W}_r(x) = \frac{\widehat{W}(S^m \times S^n)}{\widehat{W}(S^{m+n})}, x = \frac{r}{R}.$$

What happens?

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

March 2, 2015 16 / 18

- 4 同 ト 4 三 ト 4 三

Maximizers of entropy, $S^m \times S^n$ geometry in Higher D

As a generalization of a torus, for $S^m\times S^n$ geometries we have $\bullet \ d=m+n+2=4$

d=4	$S^1 \times S^1$	
x_{min}	0.707	
$\widehat{W}_{r,min}$	1.571	

۹	d =	m +	n +	2 =	: 5

d=5	$S^2 imes S^1$	$S^1 imes S^2$
x_{min}	0.886	0.816
$\widehat{W}_{r,min}$	1.391	1.333

•
$$d = m + n + 2 = 6$$

d=6	$S^3 imes S^1$	$S^2 imes S^2$	$S^1 imes S^3$
x_{min}	0.968	1	1
$\widehat{W}_{r,min}$	1.324	1.237	1.116

•
$$d = m + n + 2 = 7$$

d=7	$S^4 \times S^1$	$S^3 \times S^2$	$S^2 \times S^3$	$S^1 \times S^4$
x_{min}	0.9987	1	1	1
$\widehat{W}_{r,min}$	1.289	1.226	1.152	1.076

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

Conclusion

Most symmetric is the most entropic!

Amin Faraji Astaneh In Collabration with Gar

Entanglement and Symmetry

March 2, 2015 18 / 18

3

イロト イポト イヨト イヨト