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Plan

• Review of (holographic) entanglement entropy

• Explicit example: static and time dependent holographic entanglement

entropy

• Special topics: different lines of research
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Entanglement entropy

H = HA ⊗HB
The reduced density matrix of the subsystem A

ρA = TrB(ρ)

Then the entanglement entropy is defined as the von-Neumann entropy

SA = −Tr(ρA ln ρA)

A measure how much a given quantum state is quantum mechanically

entangled.
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Properties of Entanglement entropy

1. For pure state SA = SB

2. For two subspace A and B, the strong subadditivity is

SA + SB ≥ SA∪B + SA∩B

3. Leading divergence term is proportional to the area of the boundary ∂A

SA = c0
Area(∂A)

εd−1
+O(ε−(d−2)),
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3. Area law?

We have seen that the entanglement entropy is proportional to the area of

the entangling region. How general is this?

Already in two dimensions the entanglement entropy is proportional to the

log

S =
c

3
ln
`

ε

It is possible to have other behavior. In particular for the case where the

corresponding theory is non-local.

Let us explore it in an explicit example.
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General solution with hyperscaling factor

S = −
1

16πGN

∫
dD+2x

√
−g

R− 1

2
(∂φ)2 + V (φ)−

1

4

Ng∑
i=1

eλiφF (i)2
 ,

where V (φ) = V0e
γφ, G is the Newton constant, γ, V0 and λi are free param-

eters of the model.

One of the gauge field is required to produce an anisotropy while the above

particular form of the potential is needed to get hyperscaling violating factor.

The other gauge fields make the background charged. In what follows we

will consider Ng = 2.
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The model admits solutions with hyperscaling violating factor

ds2 = r−2 θ
D

(
− r2zdt2 +

dr2

r2
+ r2d~x2

)
,

Under scaling

t→ ξzt, xi → ξx, r → ξ−1r

the metric scales ds→ ξθ/Dds.

S ∼ T (D−θ)/z
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It has exact charged black hole solutions as follows

ds2 = r−2 θ
D

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
, φ = β ln r,

A
(1)
t =

√
2(z − 1)

D − θ + z
rD−θ+z, A

(2)
t =

√
2(D − θ)

D − θ + z − 2

Q

rD−θ+z−2
,

with β =
√

2(D − θ)(z − 1− θ/D) and

f(r) = 1−
m

rD−θ+z
+

Q2

r2(D−θ+z−1)
.

where z is the dynamical exponent and θ is the hyperscaling violation

exponent.
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To be more concrete, consider m = Q = 0 and after a double Wick rotation

as follows

t→ iy, xd → it,

one gets

ds2
d+2 = r

2θ
d

dy2

r2z
+
dr2

r2
+

∑d−1
i=1 dx

2
i

r2
−
dt2

r2

 .

Let us compute the holographic entanglement entropy for the following strip

`

2
≤ y ≤

`

2
, 0 ≤ xi ≤ L, for i = 1, · · · , d− 1.
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Setting y = y(r) the induced metric of the co-dimension two hyper surface

is

ds2
ind = r2θd

(y′2
r2z

+
1

r2

)
dr2 +

∑d−1
i=1 dx

2
i

r2

 .
Therefore the area of the surface is

A = Ld−1
∫
ε
dr

√
r2(z−1) + y′2

rd+z−θ−1
.

Minimizing this area, for general θ, d and z, one finds

S =
Ld−1

4(d− θ − 1)GN

 1

εd−θ−1
− b0

c
(d−θ−1)/z
0

`(d−θ−1)/z

 .
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For θ = d− 1

S =
1

4zπGN

Ld−1

rd−1
F

ln
z`

εz
,

For θ = d

S ∼ Ld−1`1/z.

For z = 1 it is indeed a volume law!

The properties of the system may be reflected in the behavior of the holo-

graphic Entanglement. May be used as a probe: Different phase transitions,

Fermi surface,....
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4. Higher derivative

The holographic formula we have considered is for Einstein gravity. Moti-

vated by the Wald formula it is interesting to see how this formula is modified

in the presence of higher derivative corrections to Einstein gravity.

Unlike the Wald formula for black hole entropy there is no a rigorous deriva-

tion for a general expression when we have arbitrary higher derivative cor-

rections.

Consider an action with R2 terms

S = −
1

16GN

∫
dd+2x

√
g
[
R− 2Λ + (αRµνρσR

µνρσ + βRµνR
µν + γR2)

]
,
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For the Gauss-Bonnet gravity where α = λ, β = −4λ, γ = λ, the holographic

entanglement entropy is argued to be

SA = MinγA

[
1

4GN

∫
γA
ddx
√
h(1 + 2λRint)

]
,

where Rint is the intrinsic curvature of γA.

Nevertheless for generic case one still needs a general formula!
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The main problem comes from the fact that, unlike horizon, for a generic
hypersurface the extrinsic curvature is non-zero.

Therefore beyond the terms as that of Wald formula one could have other
terms with is proportional to extrinsic curvature.

The corresponding entropy functional for our case becomes

SA ∼
∫
d2ζ
√
h

[
γR− β

(
Rµνn

µ
i n

ν
i −

1

2
KiKi

)
+ α

(
Rµνρσn

µ
i n

ν
jn

ρ
in
σ
j −K

i
µνK

µν
i

)]
where i = 1,2 denotes two transverse directions to a co-dimension two hyper-
surface in the bulk, nµi are two unit mutually orthogonal normal vectors on
the co-dimension two hyper-surface and K(i) is the trace of two extrinsic
curvature tensors defined by

K(i)
µν = πσµπ

ρ
ν∇ρ(ni)σ, with πσµ = εσµ + ξ

∑
i=1,2

(ni)
σ(ni)µ

where ξ = −1 for space-like and ξ = 1 for time-like vectors. Moreover h is
the induced metric on the hyper-surface whose coordinates are denoted by
ζ.
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A way to find a reasonable expression is to use the replica trick which in gen-
eral leads to a singular geometry. Then one should extract the contribution
of the cone!

Near the cone the metric may be written as

ds2 = g(r)dτ2 + dr2 + γij(r, x)dxidxj g(r) ∼ r2 +O(r4)

with the identification τ ≡ τ + 2πn.

One may regularized the cone

ds2 = e2σ(x,r)[dτ2 + fn(r)dr2 + γij(r, τ, x)dxidxj, fn(r) =
r2 + b2n2

r2 + b2

γ(r, τ, x) = hij(x) + 2Ka
ijn

arn + gij(x)r2 + (KaKb)ijn
anbr2n + · · ·

Other regularizations may be used: The results should be independent of
the regularization.
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Using this metric one can find the contribution of each rearm . For example

R
(n)
µν = Rreg

µν + 2πnaµn
b
νδΣ

which leads to a term in the entropy as follows

SA →
∫

Σ
Rµνn

µ
an

ν
b

On the other hand from the extrinsic curvature one gets

SA → −
1

2

∫
Σ
K2

So one arrives that ∫
RµνR

µν →
∫

Σ
(Rµνn

µ
an

ν
b −

1

2
K2)

Other terms may be computed in the same way.

Is this the right thing to do? What about the regularization?
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Let us check it for 4D conformal gravity

S = −
κ

32π

∫
d4x
√
−g

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2
)

= −
κ

32π
GB4 −

κ

16π

∫
d4x
√
−g

(
RµνR

µν −
1

3
R2
)

= −
κ

32π
GB4 + Sdyn,

where GB4 is the four dimensional Gauss-Bonnet action which is a total

derivative and does not contribute to the equations of motion. Note that

since the Gauss-Bonnet term is topological, the whole dynamics must be

encoded in the second term ( Sdyn).
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It is then easy to compute the entanglement entropy ( for example for and

AdS solution)

Sdyn
EE = κLy

1

ε
−

2πΓ
(

3
4

)2

Γ
(

1
4

)2

1

`

 .
Going through the same procedure for the Gauss-Bonnet term, one arrives

at

SGB
EE = κLy

(
−

1

ε

)
.

It is then clear that taking both contributions into account the divergent

term will drop leading to a finite entanglement entropy.

More over Sdyn
EE is the same as that of Einstein gravity. It is consistent with

the relation between 4D CG and 4D Einstein gravity.

For higher order derivatives more works are needed.
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