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Plan

• Review of (holographic) entanglement entropy

• Explicit example: static and time dependent holographic entanglement

entropy

• Special topics: different lines of research
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Entanglement entropy

Consider a state |ψ〉 in a Hilbert space H, which evolves in time by its

Hamiltonian H

Physical quantities are computed as expectation values of operators as fol-

lows

〈O〉 = 〈ψ|O|ψ〉 = Tr(ρO)

where we defined the density matrix ρ = |ψ〉〈ψ|. This system is called a

pure state as it is described by a unique wave function |ψ〉.

In mixed states, the system is described by a density matrix ρ. An example

of a mixed state is the canonical distribution

ρ =
e−βH

Tr(e−βH)
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Assume that the quantum system has multiple degrees of freedom and so
one can decompose the total system into two subsystems A and B

A

B

H = HA ⊗HB
The reduced density matrix of the subsystem A

ρA = TrB(ρ)

Then the entanglement entropy is defined as the von-Neumann entropy

SA = −Tr(ρA ln ρA)

A measure how much a given quantum state is quantum mechanically
entangled.
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An example

Consider a system consisting of two spinors with s = 1
2. Consider the fol-

lowing state

|ψ〉 = sin θ| ↑〉A| ↓〉B + cos θ| ↓〉A| ↑〉B 0 ≤ θ ≤
π

2

Using the density matrix ρ = |ψ〉〈ψ| one has

ρA = TrB(|ψ〉〈ψ|) = sin2 θ| ↑〉A| ↑〉A + cos2 θ| ↓〉A| ↓〉A
Therefore

SA = −Tr(ρA ln ρA) = − sin2 θ ln sin2 θ − cos2 θ ln cos2 θ

θ = 0,
π

2
−→ SA = 0,

θ =
π

4
−→ SA = ln 2
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Properties of Entanglement entropy

A
B

A

1. SA ≥ 0 and SA ≤ ln(Dim{Hibert}).

1. For pure state SA = SB

2. For two subspace A and B, the strong subadditivity is

SA + SB ≤ SA∪B + SA∩B

3. Leading divergence term is proportional to the area of the boundary ∂A

SA = c0
Area(∂A)

εd−1
+O(ε−(d−2)),
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Rényi entropies

It is also useful to compute Rényi entropies

Sn =
1

1− n
log Trρn

Then the entanglement entropy is given by

SE = lim
n→1

Sn

Practically one may first compute Tr(ρn) by making use the replica trick and

then

SE = −∂nTrρn|n=1
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Consider a quantum field theory with a generic field φ(τ, ~x). The amplitude

to go from a field configuration φ1 at τ1 to a field configuration φ2 at τ2

〈φ2(τ2, ~x)|φ1(τ1, ~x)〉 = 〈φ2|e−H(τ2−τ1)|φ1〉 = N
∫
Dφ e−S

The element of the density matrix is

ρφ2φ1
= 〈φ2|e−H(τ2−τ1)|φ1〉

Let us assume a periodic boundary condition

φ2(τ2, ~x) = φ1(τ1, ~x) for τ2 = τ1 + 2πβ

.
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The trace of density matrix is given by

Tr(ρ) =
∫
dφ1〈φ1|e−Hβ|φ1〉 = N

∫
periodic

Dφ e−S

This is indeed the definition of partition function. Therefore one has

Tr(ρ) = Z[β]

The reduced density matrix should be also given in terms of

“partition function”.
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Consider a field configuration φ at τ = 0. Then the corresponding wave
function is

Ψ[φ] =
∫ φ(0)

φ(−∞)=0
Dφ e−S

Similarly

Ψ∗[φ] =
∫ φ(∞)=0

φ(0)
Dφ e−S

So that

ρφ2φ1
= Ψ∗[φ2]Ψ[φ1]
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Reduced density matrix

A : x ∈ [u, v] B : x ∈ (−∞, u] ∪ [v,∞)

[ρA]φ+φ− = N
∫ φ(∞)=0

φ(−∞)=0
Dφ e−S

∏
x∈A

δ(φ(0−)− φ−)δ(φ(0+)− φ+)
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The nth power of reduced density matrix is

[ρA]
φ+

1 φ
−
1

[ρA]
φ+

2 φ
−
2

[ρA]
φ+

3 φ
−
3
· · · [ρA]

φ+
n φ
−
n

With the identification

φ−i = φ+
i+1

The trace is then given by further identification

φ−n = φ+
1

Tr(ρn) = [ρA]
φ+
n φ
−
1

[ρA]
φ+

1 φ
−
2

[ρA]
φ+

2 φ
−
3
· · · [ρA]

φ+
n−1φ

−
n
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Using the definition of reduced density matrix one arrives at

Tr(ρn) = Nn
∫
Mn

Dφ e−S≡ NnZn

Thus

S = −∂n log Tr(ρn)|n=1 = −∂n(logNnZn)

= −∂n
(

logZn − n logZ1

)∣∣∣∣∣
n=1

Here, as usual, we set N = Z−1
1 .
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AdS/CFT correspondence

Basically AdS/CFT correspondence is a duality or a relation between two

theories one with a gravity and the other without gravity.

The gravitational theory is usually defined in higher dimension.

Well developed case is the one where the gravity is defined on an AdS

geometry where the dual theory is a CFT living in the conformal boundary

of AdS space.
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Classical gravity on an asymptotically locally AdSd+1 background is dual to

a d-dimensional Large N strongly coupled field theory with a UV fixed point

on its boundary.

AdSd+1 metric in Poincare coordinates

ds2 =
r2

R2
(−dt2 + d~x2) +

R2

r2
dr2.

AdSd+1 metric in global coordinates

ds2 = −(1 +
r2

R2
)dt2 +

dr2

1 + r2

R2

+ r2dΩ2
d−1.

Here boundary is at r →∞
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There is one to one correspondence between objects in CFT and those in

the gravitational theory on AdS space.

Gravity ⇐⇒ Field theory

{r, t, ~x} ⇐⇒ {scale of energy, t, ~x}
Near boundary
Near horizon

⇐⇒ UV, IR regions

Symmetries ⇐⇒ Symmetries

Fields Φ(r, t, ~x) ⇐⇒ Operators O(t, ~x)

On shell action ⇐⇒ Generating function
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Holographic Formula for Entanglement Entropy

For static background and fixed time divide the boundary into A and B.
Extend this division A∪B to of the bulk spacetime. Extend ∂A to a surface
γA in the entire spacetime such that ∂γA = ∂A.

SA =
Area(γA)

4G(d+2)
N
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Static solutions

Let’s compute the holographic entanglement entropy for a strip in a static

asymptotically AdS geometry.

dS2 =
L2

r2

(
−f(r)dt2 + g(r)dr2 + dx2

1 + dx2
d−2

)
,

For black hole solution

f(r) = g(r)−1 = 1−mrd = 1−
rd

rdH
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Consider an entangling region in the shape of a strip with the width of `

given by

−
`

2
≤ x1 ≤

`

2
, 0 ≤ xi ≤ L, i = 2, · · · , d− 2.

The holographic entanglement entropy may be computed by minimizing a

codimension two hypersurface in the bulk geometry whose intersection with

the boundary coincides with the above strip.
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Assuming that the profile of the hypersurface in the bulk is parameterized

by x1 = x(r), the corresponding induced metric is

dS2
ind =

R2

r2

[ (
g(r) + x′2

)
dr2 + d~x2

]
.

Therefore the area A reads

A = Ld−2Rd−1
∫
dr

√
g + x′2

rd−1
,

`

2
=
∫ rt

0
dr

√
g(r)

(
r
rt

)d−1√
1−

(
r
rt

)2(d−1)
, S =

Ld−2Rd−1

2GN

∫ rt
ε

√
g(r)dr

rd−1

√
1−

(
r
rt

)2(d−1)

where rt is a turning point and ε is a UV cut-off.
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For the vacuum state where f(r) = g(r) = 1 (AdS solution) one gets

S =



Ld−2Rd−1

2G

(
− 1

(d−1)εd−2 + c0
`d−2

)
for d 6= 2,

R
2G ln `

ε = c
3 ln `

ε, for d = 2,

with c0 being a numerical factor

c0 =
2d−2π

d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)

d−1
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When f 6= 1, in general, it is not possible to find an explicit expression for

the entanglement entropy, though in certain limits one may extract a general

behavior of the entanglement entropy.

In particular in the limit of mld � 1, one finds

∆A =
Ld−2

2

∫
dρ δf


√
f−1 + x′2

ρd−1

 ∣∣∣∣∣
f=1

∆f,

which leads to the following expression for the entanglement entropy

SBH = Svac +
Ld−2

4GN
c1m`

2,

where Svac is the entanglement entropy of the vacuum solution, and

c1 =
1

16(d+ 1)
√
π

Γ( 1
2(d−1))2Γ( 1

d−1)

Γ( d
2(d−1))2Γ(1

2 + 1
d−1)

.
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For m`d � 1 the main contributions to the entanglement entropy comes

from the limit where the minimal surface is extended all the way to the

horizon so that ρt ∼ ρH. Setting u = ρ
ρt

one gets

`

2
≈ ρH

∫ 1

0

ud−1du√
(1− ud)

(
1− u2(d−1)

),
SBH ≈

Ld−2

4GNρ
d−2
H

∫ 1

ε
ρH

du

ud−1
√

(1− ud)
(
1− u2(d−1)

).
Note that apart from the UV divergent term in SBH, due to the double zero

in the square roots, the main contributions in the above integrals come from

u = 1 point. Indeed around u = 1 it may be recast to the following form

SBH ≈
Ld−2

4GNρ
d−2
H


∫ 1

0

ud−1du√
(1− ud)

(
1− u2(d−1)

) +
∫ 1

ε
ρH

du

√
1− u2(d−1)

ud−1
√

1− ud

 .
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Therefore one arrives at

SBH ≈
Ld−2

4GN

 1

(d− 2)εd−2
+

`

2ρd−1
H

−
c2

ρd−2
H

 .
where c2 is a positive number. For example for d = 3,4 one gets c2 =

0.88,0.33, respectively.

Note that the first finite term in the above expression is proportional to the

volume which is indeed the thermal entropy, while the second finite term is

proportional to the area of the entangling region.
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In general for a sphere with the radius R one gets

S ∼ c1
Rd−2

εd−2
+ c2

Rd−3

εd−3
+ · · ·

+ cd ln
R

ε
, for d even

+ pd for d odd

cd is a universal and is related with the conformal anomaly.
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Time-dependent backgrounds

So far we have considered static case where we have a time slice on which

we can define minimal surfaces. In the time-dependent case there is no a

natural choice of the time-slices.

In Lorentzian geometry there is no minimal area surface. In order to resolve

this issue we use the covariant holographic entanglement entropy which is

SA(t) =
Area(γA(t))

4G(d+2)
N

where γA(t) is the extremal surface in the bulk Lorentzian spacetime with

the boundary condition ∂γA(t) = ∂A(t).

Strong subadditivity?
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Example of time-dependent case: Black hole formation or Thermalization

Geometry ⇐⇒ State

AdS solution ⇐⇒ Vaccum state

Black hole ⇐⇒ Excited state; thermal

Let us perturbe a system so that the end point of the time evolution would be

a thermal state. This might be done by a global quantum quench. Typically

during evolution the system is out of equilibrium.

The thermalization process after a global quantum quench may be map to

a black hole formation due to a gravitational collapse.
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A quantum quench in the field theory may occurs due to a sudden change in

the system which might be caused by turning on the source of an operator

in an interval δt→ 0.

This change can excite the system to an excited state with non-zero energy

density that could eventually thermalize to an equilibrium state.

29



From gravity point of view this might be described by a gravitational collapse

of a thin shell of matter which can be modeled by an AdS-Vaidya metric.

dS2 =
R2

r2
[f(r, v)dv2 − 2drdv + d~x2], f(r, v) = 1−mθ(v)rd

where r is the radial coordinate, xis are spatial boundary coordinates and v

is the null coordinate. Here θ(v) is the step function and therefore for v < 0

the geometry is an AdS metric while for v > 0 it is an AdS-Schwarzschild

black hole.
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This is a solution of Einstein gravity with matter. The energy momentum

of the infalling matter is given by Tµν = %UµUν with Uµ = δµv, and

% =
1− d

2

∂f(r, v)

∂v
r,

Note that the null energy condition requires % > 0.
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Entanglement entropy for a strip

To compute the entanglement entropy for a strip with width `, let us consider

the following strip

−
`

2
≤ x1 = x ≤

`

2
, 0 ≤ xa ≤ L, for a = 2, · · · , D.

Since the metric is not static one needs to use the covariant proposal for

the holographic entanglement entropy. Therefore the corresponding co-

dimension two hypersurface in the bulk may be parametrized by v(x) and

r(x). Then the induced metric on the hypersurface, setting r = ρ, is

ds2
ind =

1

ρ2

[(
1− f(ρ, v)v′2 − 2v′ρ′

)
dx2 + dx2

a

)
,
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The area of the hypersurface reads

A =
Ld−2

2

∫ `/2

−`/2
dx

√
1− 2v′ρ′ − v′2f

ρd−1

We note, however, that since the action is independent of x the correspond-
ing Hamiltonian is a constant of motion

ρnL = H = constant.

Moreover we have two equations of motion for v and ρ. Indeed, by making
use of the above conservation law the corresponding equations of motion
read

∂xPv =
P2
ρ

2

∂f

∂v
, ∂xPρ =

P2
ρ

2

∂f

∂ρ
+

n

ρ2n+1
H2,

where

Pv = (ρ′+ v′f), Pρ = v′,

are the momenta conjugate to v and ρ up to a factor of H−1, respectively.
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These equations have to be supplemented by the following boundary condi-

tions

ρ(
`

2
) = 0, v(

`

2
) = t, ρ′(0) = 0, v′(0) = 0,

and

ρ(0) = ρt, v(0) = vt,

where (ρt, vt) is the coordinate of the extremal hypersurface turning point in

the bulk.

In what follows we will consider the case of `� ρH

34



Numerical results

m(v) =
m0

2
(1 + tanh

v

a
)

The profile of the extremal surface for a strip with ` = 12 at thin shell limit

a = 0.001 with ρH = 1 for different boundary times: t = 0, 5, 8, 10.

Evolution of the regularized area of the minimal surface for a = 0.001 and

ρH = 1. The small entangling regions for ` = 0.7,0.8,0.9,1 .
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Semi-Analytic

m(v) = m0δ(v)

i) v < 0 region

In this case which corresponds to the vacuum solution one has

P(i)v = ρ′+ v′ = 0,

which together with the conservation law yields to

v(ρ) = vt + (ρt − ρ), x(ρ) =
∫ ρt
ρ

dξ ξn√
ρ2n
t − ξ2n

.
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Note also that at the null shell where v = 0, from the above equation, one

gets

ρc = ρt + vt

which, indeed, gives the point where the extremal hypersurface intersects

the null shell. Moreover, from the conservation law in the initial phase one

finds

ρ′(i) = −v′(i) = −

√√√√(ρt
ρc

)2n

− 1
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ii) v > 0 region

In this case which the corresponding geometry is a the black hole, using the

conservation law one arrives at

ρ′2 = P2
(f)v +

(ρt
ρ

)2n

− 1

 f(ρ) ≡ Veff(ρ),

which can also be used to find

dv

dρ
= −

1

f̃(ρ)

1 +
P(f)v√
Veff(ρ)

 .

Here Veff(ρ) might be thought of as an effective potential for a one di-

mensional dynamical system whose dynamical variable is ρ. In particular the

turning point of the potential can be found by setting Veff(ρ) = 0.
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iii) Matching at the null shell

Since ρ and v are the coordinates of the space time they should be continuous

across the null shell.

We note. however, that since one is injecting matters along the null direction

v, one would expect that its corresponding momentum conjugate jumps once

one moves from v < 0 region to v > 0 region.

Therefore by integrating the equations of motion across the null shell one

arrives at

ρ′(f) =
(

1−
1

2
g(ρc)

)
ρ′(i), L(f) = L(i), v′(f) = v′(i).

It is, then, easy to read the momentum conjugate of v in v > 0 region

P(f)v =
1

2
g(ρc)ρ

′
(i) = −

1

2
g(ρc)

√√√√(ρt
ρc

)2n

− 1.
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Now we have all ingredients to find the area of the corresponding extremal

hypersurface in the bulk. In general the extremal hypersurface could extend

in both v < 0 and v > 0 regions of space-time. Therefore the width ` and

the boundary time are found

`

2
=
∫ ρt
ρc

dρ ρd−1√
ρ

2(d−1)
t − ρ2(d−1)

+
∫ ρc

0

dρ√
Veff(ρ)

, t =
∫ ρc

0

dρ

f(ρ)

1 +
E√

Veff(ρ)

 ,
where E = P(f)v.

Finally the entanglement reads

S =
Ld−2

2G

[ ∫ ρt
ρc

ρd−1
t dρ

ρd−1
√
ρ

2(d−1)
t − ρ2(d−1)

+ ρd−1
t

∫ ρc
0

dρ

ρ2(d−1)
√
Veff(ρ)

]
.
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Early time

At the early time where t � ρH the crossing point of the hypersurfaces is

very close to the boundary, ρc
ρH
� 1. Therefore one may expand t, and A

leading to

t ≈ ρc

1 +
1

d+ 1

(
ρc

ρH

)d
+

1

2d+ 1

(
ρc

ρH

)2d

+ ...

 ,
A ≈

Ld−2

(d− 2)

 1

εd−2
− c

1

ρd−2
t

+
Ld−2m

4
ρ2
c

1 +
1

2d

(
ρc

ρt

)2(d−1)

+ ...

 ,
where c =

√
π

Γ( d
2(d−1)

)

Γ( 1
2(d−1)

)
. So that at leading order one finds

S ≈ Svac +
LD−1m

8G
t2.
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Intermediate time interval

In the intermediate time interval where ρH � t � `
2, the entanglement

entropy growth linearly with time. Indeed, there is a critical extremal surface
which is responsible for the linear growth in this time interval.

Veff(ρ) might be thought of as an effective potential for a one dimensional
dynamical system whose dynamical variable is ρ.

For a fixed extremal hypersurface turning point in the bulk, ρt, there is a
free parameter in the effective potential given by ρc which may be tuned to
a particular value ρc = ρ∗c such that the minimum of the effective potential
becomes zero

∂Veff(ρ)

∂ρ

∣∣∣∣∣
ρm,ρ∗c

= 0, Veff(ρ)|ρm,ρ∗c = 0.

If the hypersurface intersects the null shell at the critical point it remains
fixed at ρm.
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Therefore in the intermediate time interval the main contributions to `, t

and A come from a hypersurface which is closed to the critical extremal

hypersurface.

In this case assuming ρc = ρ∗c(1 − δ) for δ � 1 in the limit of ρ → ρm and

with the conditions ρ∗c
ρt
, ρmρt
� 1 one finds

t ≈ −
ρ

2(z−1)
m E∗

f(ρm)
√

1
2V
′′
eff

log δ,
`

2
≈ cρt +

f(ρm)

E∗
t

A ≈
Ld−2

(d− 2)

 1

εd−2
− c

1

ρd−2
t

− Ld−2ρd−1
t

ρ
2(d−1)
m

√
1
2V
′′
eff

log δ

where E∗ ≡ E(ρ∗c). So that

S ≈ Svac + Ld−2Sth vE t.
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The scaling behaviors of entanglement entropy

• Early times growth where t� ρH

∆S ≈
Ld−2m

8G
t2,

• The intermediate region where `
2 � t� ρH

∆S ≈ Ld−2Sth vE t,

where

vE =

(
d− 2

2(d− 1)

)d−1
d
√

d

d− 2
, Sth =

1

4Gρd−1
H

• Late time saturation t ∼ `
2

∆S ≈
Ld−2`

4Gρd−1
H

= Ld−2`Sth .
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Recall
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Having reviewed the computation of holographic entanglement entropy for

a static and time dependent background Let us consider

Special topics on holographic entanglement entropy
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1. Entanglement thermodynamics

Using our holographic model we have explored time dependent behaviors of

holographic entanglement entropy. The observation may be summarized as

follows.

The system has to scales: the size of entangling region ` and the radius of

horizon ρH.

Therefore we have two time scales

t ∼ ρH local equilibrium,

t ∼
`

2
saturation on entanglement entropy.

When ρH > `
2 the entanglement entropy saturates at t ∼ `

2 before the system

reaches a local equilibrium, whereas for ρH < `
2 the entanglement entropy is

far from its equilibrium value even though the system is locally equilibrated.
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For `
2 < ρH one has

Early times S ∼ Svac + Vd−1 E t2,

Saturation S ∼ Svac + Vd−1 E
`2

4
.

Here E is the energy density. Since the system has not reached a local

equilibrium, this is the quantity one may define.
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For `
2 < ρH one has

Early times S ∼ Svac + Vd−1 E t2,

Intermediate S ∼ Svac + Vd−1 Sth t,

Saturation S ∼ Svac + Vd−1 Sth
`

2
+
Vd−1

ρd−2
H

.

The intermediate region is ρH < t < `
2. So that at the early times the system

is out of equilibrium, though the system reaches a local equilibrium while
the entanglement entropy still grows with time.

After the local equilibrium the entanglement entropy may be given in terms
of the thermal entropy.

The entanglement entropy at the early times is sensitive to the state, while
in the intermediate region it always grows linearly.
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How general these behaviors are?Could entanglement entropy provide a gen-

eral framework to study a system out of equilibrium?

Let me remained you that thermodynamics provides a useful tool to study

a system when it is in the thermal equilibrium. In this limit the physics

may be described in terms of few macroscopic quantities such as energy,

temperature, pressure, entropy.

There are also laws of thermodynamics which describe how these quantities

behave under various conditions. In particular the first law of thermodynam-

ics which is energy conservation, tells us how the entropy change as one

changes the energy of the system.

There are several interesting phenomena which occur when the system is far

from thermal equilibrium.
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The entanglement entropy may provide a useful quantity to study excited

quantum systems which are far from thermal equilibrium. For a generic

quantum system it is difficult to compute the entanglement entropy. Nev-

ertheless, at least, for those quantum systems which have holographic de-

scriptions, one may use the holographic entanglement entropy to explore the

behavior of the system.

Another quantity which can be always defined is the energy (or energy den-

sity) of the system. It is then natural to pose the question whether there

is a relation between the entanglement entropy of an excited state and its

energy.

For sufficiently small subsystem, the entanglement entropy is proportional to

the energy of the subsystem. The proportionality constant is indeed given

by the size of the entangling region.
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Recall that in a black hole geometry and in the limit of m`d � 1 one has

SBH = Svac+
Ld−2

4GN
c1m`

2.

On the other hand the energy of the black hole is

E =
dLd−2`

16πGN
m

Therefore one arrives at

E = TE∆S, TE ∼
1

`

This may be considered as The first law of entanglement thermodynamics.

It may also be recast into the following form

∆S = ∆H.
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Modular Hamiltonian

Consider a general quantum system. For any state in the system, the state

of a subsystem A is described by reduced density matrix

ρA = TrAc(ρtotal)

where ρtotal is the density matrix of the system and Ac is the complement

of A.

The entanglement entropy is defined by the von Neumann entropy

SA = −TrρA log ρA

Since the reduced density matrix is both Hermitian and positive (semi) def-

inite, it may be expressed as

ρA =
e−HA

Tr(e−HA)
, Tr(ρA) = 1

HA is modular Hamiltonian.
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Consider any infinitesimal variation to the state of the system. At first order

one gets

δSA = −Tr(δρA log ρA)−Tr(ρAρ
−1
A δρA)

= Tr(δρAHA)−Tr(δρA)

Therefore the variation of entanglement entropy satisfies

δSA = δ〈HA〉 First law

where HA is associated with the original unperturbed state.

For a thermal state ρ = e−βH

Tr(e−βH)
one gets TδS = δ〈H〉.

The strong subadditivity may be thought of as the second law.
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For a general quantum field theory, general state and general entangling

region, the modular Hamiltonian it not known.

For a conformal field theory in its vacuum state ρtotal = |0〉〈0| in d-dimensional

Minkowski space and an entangling region in a form of a ball, the modular

Hamiltonian has a simple form.

Consider a ball with radius R0 on a time slice t = t0 and centered at xi = xi0
one has

HBall = 2π
∫

Ball
dd−1x

R2
0 − |~x− ~x0|2

2R0
Ttt(t0, ~x)

where Tµν is stress tensor.
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Therefore, starting from the vacuum state for any CFT and a ball-shaped

entangling region, the first law reduces to

δSB = δEB

where

EB = 2π
∫

Ball
dd−1x

R2
0 − |~x− ~x0|2

2R0
〈Ttt(t0, ~x)〉

For a CFT theory which has gravitational description, both δS and δE can

be computed from gravity side. Then the first law is a constraint on the

small perturbations around the vacuum AdS solution.
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• For small perturbation around the vacuum solution satisfies linear equa-

tions of motion, the first law would hold.

• A small perturbation which satisfies first law, will obey linear equations of

motion.

Application

First law applied to infinitesimal ball shaped entangling regions may be used

to compute holographic stress tensor and constrains the asymptotic behavior

of the metric.

Given an event in the dual field theory one would like to know which part of

bulk could describe this event?
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2. n-partite information

One may study entanglement entropy for two disjoint regions. For two

disjoint regions A and B, it is more natural to compute the amount of

correlations (both classical and quantum) between these two regions which

is given by the mutual information.

It is actually a quantity which measures the amount of information that A

and B can share which in terms of the entanglement entropy is given by

I(A,B) = S(A) + S(B)− S(A ∪B),

Although the entanglement entropy is UV divergent, the mutual informa-

tion is finite. Moreover by making use of the subadditivity property of the

entanglement entropy, it is evident that the mutual information is always

non-negative and it is zero for two uncorrelated systems.
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More generally one may want to compute entanglement entropy for a sub-

system consists of n disjoint regions Ai, i = 1, · · · , n.

Following the notion of mutual information for a system of two disjoint re-

gions, it is natural to define a quantity, n-partite information, which could

measure the amount of information or correlations (both classical and quan-

tum) between them. Intuitively, one would expect that for n un-correlated

systems the n-partite information must be zero. Moreover, for n discon-

nected systems it should be finite.
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Actually for a given n disjoint regions, there is no a unique way to define

n-partite information and indeed, it can be defined in different ways. In

particular in terms of entanglement entropy one may define the n-partite

information as follows

I[n](A{i}) =
n∑
i=1

S(Ai)−
n∑
i<j

S(Ai ∪Aj) +
n∑

i<j<k

S(Ai ∪Aj ∪Ak)− · · · · · ·

−(−1)nS(A1 ∪A2 ∪ · · · ∪An),

In terms of the mutual information, this n-partite information may be recast

into the following form

I[n](A{i}) =
n∑
i=2

I[2](A1, Ai)−
n∑

i=2<j

I[2](A1, Ai ∪Aj)

+
n∑

i=2<j<k

I[2](A1, Ai ∪Aj ∪Ak)− · · ·

+(−1)nI[2](A1, A2 ∪A2 · · · ∪An).

It is worth mentioning that although the mutual information is always non-

negative, the n-partite information I[n] could have either signs.
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It may be re-expressed in terms of (n− 1)-partite information as follows

I[n](A{i}) = I[n−1](A{1,··· ,n−2}, An−1) + I[n−1](A{1,··· ,n−2}, An)

−I[n−1](A{1,··· ,n−2}, An−1 ∪An).

n-partite information I[n] may be thought of a quantity which measures the

degree of extensivity of the (n− 1)-partite information.

61



In the literature of information theory for a subsystem consisting of n disjoint

regions, one may define another quantity which, indeed, is a direct general-

ization of mutual information known as multi-partite entanglement defined

as follows

J [n](A{i}) =
n∑
i

S(Ai)− S(A1 ∪A2 ∪ · · · ∪An),

In terms of the mutual information it may be recast into the following form

J [n](A{i}) = I[2](A1, A2) + I[2](A1 ∪A2, A3) + · · ·+ I[2](A1 ∪A2 · · · ∪An−1, An).

Note that this quantity is finite for a system with n disjoint regions and is

zero for n un-correlated regions. It is always non-negative.
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Holographic n-partite information

A1 A2 A3 An

` ` ` `

h h

We will study n-partite information of a subsystem consists of n disjoint
regions Ai, i = 1, · · · , n in a d-dimensional CFT for the vacuum and thermal
states whose gravity duals are provided by the AdS and AdS black brane
geometries. The n disjoint regions are given by n parallel infinite strips of
equal width ` separated by n− 1 regions of width h.

I[n](A{i}) =
n∑
i=1

S(Ai)−
n∑
i<j

S(Ai ∪Aj) +
n∑

i<j<k

S(Ai ∪Aj ∪Ak)− · · · · · ·

− (−1)nS(A1 ∪A2 ∪ · · · ∪An).
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r

xa1 b1 a2 b2

h` `

r

xa1 b1 a2 b2

h` `

The main subtlety in evaluating the above quantity is the computation of

entanglement entropy of union of subsystem.

For a given two strips with the widths ` and distance h, there are two minimal

hypersurfaces associated with the entanglement entropy S(A ∪B) and thus

the corresponding entanglement entropy behaves differently.

S(A ∪B) =


S(2`+ h) + S(h) h� `,

2S(`) h� `,
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Therefore the mutual information becomes

I(A ∪B) =


2S(`)− S(2`+ h)− S(h) h� `,

0 h� `,

The holographic mutual information undergoes a first order phase transition

as one increases the distance between two strips. Indeed, there is a critical

value of h` above which the mutual information vanishes. As we just observed,

this peculiar behavior has to do with the definition of entanglement entropy

of the union A ∪B.
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n-partite information for the vacuum state of a CFT whose gravity dual is

given by an AdS background

Ĩ
[n]
vac =

Ld−2c0
4GN

(
−

2

((n− 1)`+ (n− 2)h)d−2
+

1

(n`+ (n− 1)h)d−2

+
1

((n− 2)`+ (n− 3)h)d−2

)
.

For a thermal state whose gravity dual is provided by an AdS black brane

geometry, and in the limit of `� ρH, one finds

Ĩ
[n]
BH = Ĩ

[n]
vac −

Ld−2

2GN
c1

(`+ h)2

ρdH
.

while for ρH � ` it vanishes.
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time dependent behavior
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Within the context of the AdS/CFT correspondence one may compute n-

partite information. It has a definite sign: for even n it is positive and for

odd n it is negative, though for a generic field theory it could have either

signs.

One may suspect that having definite sign for the n-partite information is,

indeed, an intrinsic property of a field theory which has gravity dual.

What about other shape? Can we see the phase transition for n-partite

using the field theory description?
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3. Area law?

We have seen that the entanglement entropy is proportional to the area of

the entangling region. How general is this?

Already in two dimensions the entanglement entropy is proportional to the

log

S =
c

3
ln
`

ε

It is possible to have other behavior. In particular for the case where the

corresponding theory is non-local.

Let us explore it in an explicit example.
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General solution with hyperscaling factor

S = −
1

16πGN

∫
dD+2x

√
−g

R− 1

2
(∂φ)2 + V (φ)−

1

4

Ng∑
i=1

eλiφF (i)2
 ,

where V (φ) = V0e
γφ, G is the Newton constant, γ, V0 and λi are free param-

eters of the model.

One of the gauge field is required to produce an anisotropy while the above

particular form of the potential is needed to get hyperscaling violating factor.

The other gauge fields make the background charged. In what follows we

will consider Ng = 2.
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The model admits solutions with hyperscaling violating factor

ds2 = r−2 θ
D

(
− r2zdt2 +

dr2

r2
+ r2d~x2

)
,

Under scaling

t→ ξzt, xi → ξx, r → ξ−1r

the metric scales ds→ ξθ/Dds.

S ∼ T (D−θ)/z
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It has exact charged black hole solutions as follows

ds2 = r−2 θ
D

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
, φ = β ln r,

A
(1)
t =

√
2(z − 1)

D − θ + z
rD−θ+z, A

(2)
t =

√
2(D − θ)

D − θ + z − 2

Q

rD−θ+z−2
,

with β =
√

2(D − θ)(z − 1− θ/D) and

f(r) = 1−
m

rD−θ+z
+

Q2

r2(D−θ+z−1)
.

where z is the dynamical exponent and θ is the hyperscaling violation

exponent.
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To be more concrete, consider m = Q = 0 and after a double Wick rotation

as follows

t→ iy, xd → it,

one gets

ds2
d+2 = r

2θ
d

dy2

r2z
+
dr2

r2
+

∑d−1
i=1 dx

2
i

r2
−
dt2

r2

 .

Let us compute the holographic entanglement entropy for the following strip

`

2
≤ y ≤

`

2
, 0 ≤ xi ≤ L, for i = 1, · · · , d− 1.
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Setting y = y(r) the induced metric of the co-dimension two hyper surface

is

ds2
ind = r2θd

(y′2
r2z

+
1

r2

)
dr2 +

∑d−1
i=1 dx

2
i

r2

 .
Therefore the area of the surface is

A = Ld−1
∫
ε
dr

√
r2(z−1) + y′2

rd+z−θ−1
.

Minimizing this area, for general θ, d and z, one finds

S =
Ld−1

4(d− θ − 1)GN

 1

εd−θ−1
− b0

c
(d−θ−1)/z
0

`(d−θ−1)/z

 .
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For θ = d− 1

S =
1

4zπGN

Ld−1

rd−1
F

ln
z`

εz
,

For θ = d

S ∼ Ld−1`1/z.

For z = 1 it is indeed a volume law!

The properties of the system may be reflected in the behavior of the holo-

graphic Entanglement. May be used as probe: Different phase transitions,

Fermi surface,
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4. Higher derivative

The holographic formula we have considered is for Einstein gravity. Moti-

vated by the Wald formula it is interesting to see how this formula is modified

in the presence of higher derivative corrections to Einstein gravity.

Unlike the Wald formula for black hole entropy there is no a rigorous deriva-

tion for a general expression when we have arbitrary higher derivative cor-

rections.

Consider an action with R2 terms

S = −
1

16GN

∫
dd+2x

√
g
[
R− 2Λ + (αRµνρσR

µνρσ + βRµνR
µν + γR2)

]
,
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For the Gauss-Bonnet gravity where α = λ, β = −4λ, γ = λ, the holographic

entanglement entropy is argued to be

SA = MinγA

[
1

4GN

∫
γA
ddx
√
h(1 + 2λRint)

]
,

where Rint is the intrinsic curvature of γA.

Nevertheless for generic case one still needs a general formula!
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The main problem comes from the fact that, unlike horizon, for a generic
hypersurface the extrinsic curvature is non-zero.

Therefore beyond the terms as that of Wald formula one could have other
terms with is proportional to extrinsic curvature.

The corresponding entropy functional for our case becomes

SA ∼
∫
d2ζ
√
h

[
γR− β

(
Rµνn

µ
i n

ν
i −

1

2
KiKi

)
+ α

(
Rµνρσn

µ
i n

ν
jn

ρ
in
σ
j −K

i
µνK

µν
i

)]
where i = 1,2 denotes two transverse directions to a co-dimension two hyper-
surface in the bulk, nµi are two unit mutually orthogonal normal vectors on
the co-dimension two hyper-surface and K(i) is the trace of two extrinsic
curvature tensors defined by

K(i)
µν = πσµπ

ρ
ν∇ρ(ni)σ, with πσµ = εσµ + ξ

∑
i=1,2

(ni)
σ(ni)µ

where ξ = −1 for space-like and ξ = 1 for time-like vectors. Moreover h is
the induced metric on the hyper-surface whose coordinates are denoted by
ζ.
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A way to find a reasonable expression is to use the replica trick which in gen-
eral leads to a singular geometry. Then one should extract the contribution
of the cone!

Near the cone the metric may be written as

ds2 = g(r)dτ2 + dr2 + γij(r, x)dxidxj g(r) ∼ r2 +O(r4)

with the identification τ ≡ τ + 2πn.

One may regularized the cone

ds2 = e2σ(x,r)[dτ2 + fn(r)dr2 + γij(r, τ, x)dxidxj, fn(r) =
r2 + b2n2

r2 + b2

γ(r, τ, x) = hij(x) + 2Ka
ijn

arn + gij(x)r2 + (KaKb)ijn
anbr2n + · · ·

Other regularizations may be used: The results should be independent of
the regularization.
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Using this metric one can find the contribution of each rearm . For example

R
(n)
µν = Rreg

µν + 2πnaµn
b
νδΣ

which leads to a term in the entropy as follows

SA →
∫

Σ
Rµνn

µ
an

ν
b

On the other hand from the extrinsic curvature one gets

SA → −
1

2

∫
Σ
K2

So one arrives that ∫
RµνR

µν →
∫

Σ
(Rµνn

µ
an

ν
b −

1

2
K2)

Other terms may be computed in the same way.

Is this the right thing to do? What about the regularization?
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Let us check it for 4D conformal gravity

S = −
κ

32π

∫
d4x
√
−g

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2
)

= −
κ

32π
GB4 −

κ

16π

∫
d4x
√
−g

(
RµνR

µν −
1

3
R2
)
,

where GB4 is the four dimensional Gauss-Bonnet action which is a total

derivative and does not contribute to the equations of motion. Note that

since the Gauss-Bonnet term is topological, the whole dynamics must be

encoded in the second term.
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It is then easy to compute the entanglement entropy ( for example for and

AdS solution)

Sdyn
EE = κLy

1

ε
−

2πΓ
(

3
4

)2

Γ
(

1
4

)2

1

`

 .
Going through the same procedure for the Gauss-Bonnet term, one arrives

at

SGB
EE = κLy

(
−

1

ε

)
.

It is then clear that taking both contributions into account the divergent

term will drop leading to a finite entanglement entropy.

More over Sdyn
EE is the same as that of Einstein gravity.
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