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Introduction and motivation

• QFT and the Background Field Method [Abbott 1981]

• Functional Renormalization Group [Wetterich 1993, Morris 1994]
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Introduction and motivation

• QFT and the Background Field Method :

The total field is split into a background field and a fluctuation
field φ = ϕ+ ξ or more generally φ = φ(ϕ, ξ)
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Introduction and motivation

• QFT and the Background Field Method : Advantages

Linear splitting φ = ϕ+ ξ

• No need to compute diagrams with external quantum lines

• In gauge theories, gauge invariance is maintained.

Exponential splitting φ = Expϕξ

φi = ϕi + ξi − 1
2Γimnξ

mξn + · · ·
γ̇(0) = ξ

γ(0) = ϕ

γ(1) = φ
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Introduction and motivation
• QFT and the Background Field Method : Advantages

Linear splitting φ = ϕ+ ξ

• No need to compute diagrams with external quantum lines

• In gauge theories, gauge invariance is maintained.

Exponential splitting φ = Expϕξ

• Gives a covariant effective action [Vilkovisky 1984, DeWitt 1987].

S[φ] = S′[φ′]
↓ ↓

Γ[φ] = Γ′[φ′]

For BFM with Exp parametrization
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Introduction and motivation

• Functional Renormalization Group

3 Regards the scale (k) dependent 1PI effective action Γk

3 Wilson’s idea realized by: S → S + 1
2ξ
i(Rk)ij ξ

j

◦ Rk(p
2) monotonically decreasing function of p2

◦ Rk(p
2)→ 0 for p2/k2 →∞

◦ Rk(p
2)→∞ for k →∞
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Introduction and motivation

• Functional Renormalization Group

3 Regards the scale (k) dependent 1PI effective action Γk

3 Wilson’s idea realized by: S → S + 1
2ξ
i(Rk)ij ξ

j

e−Wk =

∫
Dφµ[φ] e−S[φ]−

1
2
ξ·Rk·ξ−J ·ξ

Γk = Wk − J ·ξ̄ − 1
2 ξ̄ ·Rk ·ξ̄
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Introduction and motivation

• Functional Renormalization Group

3 Regards the scale (k) dependent 1PI effective action Γk

3 Wilson’s idea realized by: S → S + 1
2ξ
i(Rk)ij ξ

j

∂tΓk = 1
2G

mn(∂tRk)nm t = log k Gmn = Γ;mn +Rmn
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Introduction and motivation

• Applying FRG to QFT’s with BFM, usually not implemented
correctly

• Main question: What is the most general form
(background-quantum dependence) of the 1PI effective
action?

• Single-field dependence of the UV action brings additional
constraints
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Splitting symmetry & its Ward identity

S[φ] = S[ϕ+ ξ]

ϕ → ϕ+ δϕ

ξ → ξ − δϕ
⇒ φ→ φ ⇒ S[φ]→ S[φ]

S[φ] = S[φ(ϕ, ξ)]

ϕ → ϕ+ δϕ

ξ → ξ + δξ
⇒ φ→ φ ⇒ S[φ]→ S[φ]

δξ = F [ϕ, ξ]δϕ
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Splitting symmetry & its Ward identity

Q[ϕ, ξ], Q,i≡ δQ/δϕi, Q;i ≡ δQ/δξi

Splitting Ward identity

Ni ≡ Γ,i +Γ;j〈ξj,i 〉 − 1
2G

mn(Rnm),i−GnpRpm〈ξm,i 〉;n = 0

Rmn = 0, φi = ϕi+ξi, ⇒ Γ,i−Γ;i = 0 ⇒ Γ = Γ[ϕ+ξ]
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Splitting symmetry & its Ward identity
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Splitting symmetry & its Ward identity

∂tNi = −1
2 (GṘG)qp(Ni);pq
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Splitting symmetry & its Ward identity

For the exponential splitting the Ward identity

Γ,i +Γ;j〈ξj,i 〉 − 1
2G

mn(Rnm),i−GnpRpm〈ξm,i 〉;n = 0

is covariant
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Splitting symmetry & its Ward identity

• But this identity is divergent!

• This is overcome by following the BRS idea:
S → S + Ij c

iξj,i≡ Σ

ciΓ,i +ΓjΓ;j − 1
2 G

mn ci(Rnm),i−GnpRpmΓm;n = 0

Γj ≡ δΓ/δIj = 〈ciξj,i 〉

• One can renormalize this equation:
Σ→ Σr = Σ− counter-terms.

ciΓr,i +ΓjrΓr,j −1
2 G

mn
r ci(Rnm),i−Gnpr RpmΓmr;n = 0
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Gauge theories

We use the covariant approach with the Vilkovisky connection:

∇Vk g⊥ij = 0

g⊥ij = Pmi P
n
j gmn, P ij ≡ δij −Ki

αγ
αβKk

βgkj , γαβ = gijK
i
αK

j
β
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Gauge theories
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Gauge theories

In the adapted coordinates, Vilkovisky connection is given by

(ΓV )KIJ = 1
2h

KL(∂IhLJ+∂JhLI−∂LhIJ), (ΓV )Kαj = 0, ∂αhIJ = 0

hIJ is g⊥ij induced on S
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Gauge theories

Q[ϕ, ξ̄] = Q̃[ϕ, φ̄] φ̄ ≡ Expϕξ̄

Q̃,i≡ δQ̃/δϕi, Q̃;i ≡ δQ̃/δφ̄i

• Ultraviolet action is gauge invariant

Ki
α[ϕ]S̃,i = 0, Ki

α[φ]S̃;i = 0

• As a consequence, the 1PI effective action satisfies:

Ki
α[ϕ](Γ̃,i − 1

2G∇
V
i R) = 0, Ki

α[φ]Γ̃;i = 0
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Gauge theories

Assuming gauge invariance of the ultraviolet action:

Ki
α[ϕ]∇Vi R = 0

• Background gauge invariance Ki
α[ϕ]Γ̃,i = 0

• Gauge fixing independence
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Gauge theories

dφi = d‖φ
i + d⊥φ

i

= P ijφ
i +Ki

αdε
α dεα = γαβKi

β gij dφ
j

measure =

(∏
i

dφi

)√
det gij

=

(∏
α

dεα

)(∏
i

d⊥φ
i

)√
det⊥g

⊥
ij

√
detγαβ

=

(∏
α

dεα

)(∏
i

dφI

)√
dethIJ(φI)

√
detγαβ(φI)
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)√
dethIJ(φI)

√
detγαβ(φI)

can be dropped if the integrand is gauge invariant
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Gauge theories

Ki
α[ϕ]Rij = 0

Γ,I −1
2G

MN (RNM ),I +Γ;J〈ξJ,I 〉 −GNPRPM 〈ξM,I 〉;N = 0

22 / 24



Summary and Conclusions!

• We have introduced the “Splitting Ward identity” in the
presence of an infrared regulator, for general
quantum-background split, and for gauge and non-gauge
theories

• This is expected to prove important in FRG applications to
QFT’s with the background field method.
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Thank You
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