Wormholes: flare-out conditions

S. Habib Mazharimousavi
Based on papers in collaboration with Prof. M. Halilsoy

The 2nd Topical Workshop on Theoretical Physics: IPM, Tehran

October 8, 2015

1 Outline

- Morris-Thorne wormhole and flare-out conditions
- Spherically symmetric thin-shell wormholes
- Thin-shell wormhole supported by normal matter
- Example: The Hypocycloid
- Conclusion
- References

2 Morris-Thorne wormhole and flare-out conditions

The general line element of the Morris-Thorne wormhole [Morris and Thorne, A. J. P. 56,395(1988)]

$$
\begin{equation*}
d s^{2}=-e^{-2 \Phi(r)} d t^{2}+\frac{d r^{2}}{1-\frac{b(r)}{r}}+r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

in which Φ is red-shift function and b is called shape-function. Einstein equations $(8 \pi G=1)$

$$
\begin{equation*}
G_{\mu}^{\nu}=T_{\mu}^{\nu} \tag{2}
\end{equation*}
$$

implies

$$
\begin{equation*}
\rho=\frac{b^{\prime}}{r^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
p_{r}=\frac{2 \Phi^{\prime}(r-b)-\frac{b}{r}}{r^{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{\theta}=p_{\phi}=p_{r}+\frac{1}{2} r\left[p_{r}^{\prime}+\left(p_{r}+\rho\right) \Phi^{\prime}\right] . \tag{5}
\end{equation*}
$$

For a traversable wormhole, b must satisfy certain conditions which are called Flareout conditions. Let's look at the embedded spacetime at $t=$ const. and $\theta=\frac{\pi}{2}$ which is given by

$$
\begin{equation*}
d s_{2}^{2}=\frac{d r^{2}}{1-\frac{b(r)}{r}}+r^{2} d \phi^{2}=d r^{2}+d z^{2}+r^{2} d \phi^{2} \tag{6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{d z}{d r}=\frac{1}{\sqrt{\frac{r}{b}-1}} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d r}{d z}=\sqrt{\frac{r}{b}-1} \tag{8}
\end{equation*}
$$

At the throat, $\frac{d r}{d z}=0$ and $\frac{d^{2} r}{d z^{2}}>0$ which is seen from the Fig. 1 . Hence, $\frac{d r}{d z}=0$ at the throat implies $b(r=a)=a$ in which $r=a$ is the location of the throat while $\frac{d^{2} r}{d z^{2}}>0$ implies $\frac{b-r b^{\prime}}{2 b^{2} \sqrt{\frac{r}{b}-1}}>0$ for $r>a$.

In summary the flare-out conditions are:

- $b \leq r$ for $a \leq r$
- $b(a)=a$
- $b^{\prime}<\frac{b}{r}$

Now is time to check the WEC:
i $\rho \geq 0$
ii $\rho+p_{r} \geq 0$
iii $\rho+p_{\theta / \phi} \geq 0$

Simply one can see, for instance ii, can not be satisfied near the throat:

$$
\begin{equation*}
\rho+p_{r}=\frac{2 \Phi^{\prime}(r-b)+b^{\prime}-\frac{b}{r}}{r^{2}} \tag{9}
\end{equation*}
$$

which at the throat becomes

$$
\begin{equation*}
\rho+p_{r}=\frac{b^{\prime}-\frac{b}{r}}{r^{2}} \tag{10}
\end{equation*}
$$

which is clearly negative by considering the flare-out conditions.

In 2 + 1-dimensions:

$$
\begin{gather*}
d s^{2}=-e^{-2 \Phi(r)} d t^{2}+\frac{d r^{2}}{1-\frac{b(r)}{r}}+r^{2} d \theta^{2} \tag{11}\\
\rho=\frac{r b^{\prime}-b}{2 r^{3}} \tag{12}\\
p_{r}=-\frac{\Phi^{\prime}(b-r)}{r^{2}} \tag{13}\\
p_{\theta}=p_{r}+r \Phi^{\prime}\left(\rho+p_{r}\right) \tag{14}
\end{gather*}
$$

where the flare-out conditions prevents the energy to be positive i.e., $\rho<0$.

3 Spherically Symmetric Thin-shell Wormholes

Let's consider a spherically symmetric manifold \mathcal{M} [Visser, PRD 39,3182(1989)]

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{15}
\end{equation*}
$$

Next, we cut the part $r<a$ from \mathcal{M} and the remaining part is called \mathcal{M}^{+}which is an incomplete manifold. Now we make an identical copy of \mathcal{M}^{+}and call it \mathcal{M}^{-}. Finally we paste \mathcal{M}^{+}and \mathcal{M}^{-}such that they are identified at the timelike hyperplane $\Sigma=r-a=0$.

In order to glue the two incomplete manifold smoothly, one must apply the Israel junction conditions which are the Einstein equations on the shell whose induced line
element is given by

$$
\begin{equation*}
d s \Sigma_{\Sigma_{+}}^{2}=d s \Sigma_{\Sigma_{-}}^{2}=d s \Sigma_{\Sigma}^{2}=-d \tau^{2}+a^{2}(\tau)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{16}
\end{equation*}
$$

where τ is the proper time on the shell and

$$
\begin{equation*}
f(a) \dot{t}^{2}-\frac{\dot{a}^{2}}{f(a)}=1 \tag{17}
\end{equation*}
$$

The extrinsic curvature of the shell in different side is given by

$$
\begin{equation*}
K_{i j}^{ \pm}=n_{\gamma}^{ \pm}\left(\frac{d^{2} x^{\gamma}}{d x^{i} d x^{j}}+\Gamma_{\alpha \beta}^{\gamma} \frac{d x^{\alpha}}{d x^{i}} \frac{d x^{\beta}}{d x^{j}}\right) \tag{18}
\end{equation*}
$$

with the spacelike normal vector

$$
\begin{equation*}
n_{\gamma}^{ \pm}=\left(\frac{\frac{d \Sigma}{d x^{\gamma}}}{\sqrt{g^{\alpha \beta} \frac{d \Sigma}{d x^{\alpha}} \frac{d \Sigma}{d x^{\beta}}}}\right)^{ \pm} \tag{19}
\end{equation*}
$$

Israel conditions may be written as

$$
\begin{equation*}
\left[K_{i}^{j}\right]-[K] \delta_{i}^{j}=-S_{i}^{j} \tag{20}
\end{equation*}
$$

in which $\left[K_{i}^{j}\right]=K_{i}^{j+}-K_{i}^{j-}$ and $[K]=\left[K_{i}^{i}\right]$. Irrespective of the matter source of the main manifold $\mathcal{M}, S_{i}^{j}=\left(-\sigma, P_{\theta}, P_{\phi}\right)$ is the energy momentum tensor of the matter on the shell such that in order to have the thin-shell wormhole physically acceptable S_{i}^{j} must satisfy the energy conditions. The explicit expressions are given

$$
\begin{gather*}
\sigma=-\frac{4}{a} \sqrt{f(a)+\dot{a}^{2}}, \tag{21}\\
P_{\theta}=P_{\phi}=\frac{f^{\prime}(a)+2 \ddot{a}}{\sqrt{f(a)+\dot{a}^{2}}}+\frac{2}{a} \sqrt{f(a)+\dot{a}^{2}} . \tag{22}
\end{gather*}
$$

One observes that with $\sigma<0$ the shell is supported by exotic matter.

In $2+1$-dimensional spacetime, the story is almost the same, except \mathcal{M} is given by

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \theta^{2} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
d s_{\Sigma_{+}}^{2}=d s_{\Sigma_{-}}^{2}=d s_{\Sigma}^{2}=-d \tau^{2}+a^{2}(\tau) d \theta^{2} \tag{24}
\end{equation*}
$$

with

$$
\begin{align*}
\sigma & =-\frac{2}{a} \sqrt{f(a)+\dot{a}^{2}}, \tag{25}\\
P_{\theta} & =P_{\phi}=\frac{f^{\prime}(a)+2 \ddot{a}}{\sqrt{f(a)+\dot{a}^{2}}} \tag{26}
\end{align*}
$$

4 Thin-shell wormhole supported by normal matter

We shall work in $2+1$-dimensions for the rest of this talk. [Mazharimousavi and Halilsoy, 2015]

In the standard construction of the thin-shell wormhole the hyperplane $r=a$ has represented a spherical shell (in $2+1$-dimension it is just a ring). We start with a flat spacetime

$$
\begin{equation*}
d s^{2}=-d t^{2}+d r^{2}+r^{2} d \theta^{2} \tag{27}
\end{equation*}
$$

and the throat to be deformed from a ring, such that $r=R(t, \theta)$. The induced metric becomes

$$
\begin{equation*}
d s_{\Sigma}^{2}=-\left(1-\dot{R}^{2}\right) d t^{2}+\left(R^{2}+R^{\prime 2}\right) d \theta^{2}+2 \dot{R} R^{\prime} d t d \theta \tag{28}
\end{equation*}
$$

in which a prime and a dot stand for derivative with respect to θ and t, respectively. One can show that

$$
\begin{equation*}
\dot{R}^{2}=\frac{\left(\frac{\partial R}{\partial \tau}\right)^{2}}{\left(1+\left(\frac{\partial R}{\partial \tau}\right)^{2}\right)} \tag{29}
\end{equation*}
$$

The energy momentum tensor on the shell has the following components

$$
\begin{align*}
& \sigma=\frac{2\left[\left(1-\dot{R}^{2}\right)\left(R^{\prime \prime}-R-\frac{2 R^{\prime 2}}{R}\right)+\dot{R} R^{\prime}\left(\dot{R}^{\prime}-\frac{R^{\prime} \dot{R}}{R}\right)\right]}{\left[\left(R^{\prime 2}+R^{2}\right)\left(1-\dot{R}^{2}\right)+\dot{R}^{2} R^{\prime 2}\right] \sqrt{1+\left(\frac{R^{\prime}}{R}\right)^{2}-\dot{R}^{2}}} \tag{30}\\
& P=\frac{-2\left[\left(1-\dot{R}^{2}\right)\left(\dot{R}^{\prime}-\frac{R^{\prime} \dot{R}}{R}\right)-\left(R^{\prime 2}+R^{2}\right) \ddot{R}\right]}{\left[\left(R^{\prime 2}+R^{2}\right)\left(1-\dot{R}^{2}\right)+\dot{R}^{2} R^{\prime 2}\right] \sqrt{1+\left(\frac{R^{\prime}}{R}\right)^{2}-\dot{R}^{2}}} \tag{31}
\end{align*}
$$

$$
\begin{equation*}
S_{t}^{\theta}=\frac{2\left[\dot{R} R^{\prime} \ddot{R}+\left(1-\dot{R}^{2}\right)\left(\dot{R}^{\prime}-\frac{R^{\prime} \dot{R}}{R}\right)\right]}{\left[\left(R^{\prime 2}+R^{2}\right)\left(1-\dot{R}^{2}\right)+\dot{R}^{2} R^{\prime 2}\right] \sqrt{1+\left(\frac{R^{\prime}}{R}\right)^{2}-\dot{R}^{2}}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\theta}^{t}=\frac{2\left[\dot{R} R^{\prime}\left(R^{\prime \prime}-R-\frac{2 R^{\prime 2}}{R}\right)-\left(R^{\prime 2}+R^{2}\right)\left(\dot{R}^{\prime}-\frac{R^{\prime} \dot{R}}{R}\right)\right]}{\left[\left(R^{\prime 2}+R^{2}\right)\left(1-\dot{R}^{2}\right)+\dot{R}^{2} R^{\prime 2}\right] \sqrt{1+\left(\frac{R^{\prime}}{R}\right)^{2}-\dot{R}^{2}}} . \tag{33}
\end{equation*}
$$

Let's consider the throat to be static i.e., $R=R_{0}$, and $\dot{R}=\ddot{R}=0$, therefore

$$
\begin{equation*}
\sigma_{0}=\frac{2\left(R_{0}^{\prime \prime}-R_{0}-\frac{2 R_{0}^{\prime 2}}{R_{0}}\right)}{\left(R_{0}^{\prime 2}+R_{0}^{2}\right) \sqrt{1+\left(\frac{R_{0}^{\prime}}{R_{0}}\right)^{2}}} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{0}=S_{\theta}^{t}=S_{t}^{\theta}=0 \tag{35}
\end{equation*}
$$

Having only the energy density non-zero makes the energy conditions very simple given by

$$
\begin{equation*}
\sigma_{0} \geq 0 \tag{36}
\end{equation*}
$$

This is not surprising since the bulk spacetime is flat. Therefore in the static equilibrium, the only nonzero component of the energy-momentum tensor on the throat is the energy density σ_{0}. We note that the total matter supporting the wormhole is given by

$$
\begin{equation*}
U=\int_{0}^{2 \pi} \int_{0}^{\infty} \sqrt{-g} \sigma \delta(r-R) d r d \theta=\int_{0}^{2 \pi} R_{0} \sigma_{0} d \theta \tag{37}
\end{equation*}
$$

Now our task is to find $r=R=R_{0}(\theta)$ such that:

- $r=R=R_{0}(\theta)$ presents a closed timelike hyperplane
- $\sigma_{0} \geq 0$ or $R_{0}^{\prime \prime}-R_{0}-\frac{2 R_{0}^{\prime 2}}{R_{0}} \geq 0$.

5 Example: The Hypocycloid

Definition: Hypocycloid is the curve generated by a rolling small circle inside a larger circle. This is a different version of the standard cycloid which is generated by a circle
rolling on a straight line. The parametric equation of a hypocycloid is given by

$$
\begin{align*}
& x(\zeta)=(B-b) \cos \zeta+b \cos \left(\frac{B-b}{b} \zeta\right) \tag{38}\\
& y(\zeta)=(B-b) \sin \zeta-b \sin \left(\frac{B-b}{b} \zeta\right)
\end{align*}
$$

in which x and y are the Cartesian coordinates on the hypocycloid. B is the radius of the larger circle centered at the origin, $b(<B)$ is the radius of the smaller circle and $\zeta \in[0,2 \pi]$ is a real parameter. Here if one considers $B=m b$, where $m \geq 3$ is a natural number, then the curve is closed and it possesses m singularities / spikes. In Fig. 2 we plot (38) for different values of m with $B=1$.

Without loss of generality we set $B=1$ and $b=\frac{1}{m}$ and express σ as a function of ζ. For this we parametrize the equation of the throat as

$$
\begin{align*}
R & =R(\zeta)=\sqrt{x(\zeta)^{2}+y(\zeta)^{2}} \tag{39}\\
\theta & =\theta(\zeta)=\tan ^{-1}\left(\frac{y(\zeta)}{x(\zeta)}\right)
\end{align*}
$$

Using the chain rule one finds

$$
\begin{equation*}
R^{\prime}=\frac{d R}{d \theta}=\frac{\dot{R}}{\dot{\theta}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{\prime \prime}=\frac{d^{2} R}{d \theta^{2}}=\frac{\ddot{R} \dot{\theta}-\dot{R} \ddot{\theta}}{\dot{\theta}^{3}} \tag{41}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sigma=\frac{1}{4 \pi} \frac{R \ddot{R} \dot{\theta}-R \dot{R} \ddot{\theta}-R^{2} \dot{\theta}^{3}-2 \dot{\theta} \dot{R}^{2}}{\left(\dot{R}^{2}+R^{2} \dot{\theta}^{2}\right)^{\frac{3}{2}}} \tag{42}
\end{equation*}
$$

where a dot stands for the derivative with respect to the parameter ζ. Consequently the total matter is given by

$$
\begin{equation*}
U=\int_{0}^{2 \pi} u d \zeta \tag{43}
\end{equation*}
$$

where $u=R \sigma \dot{\theta}$ is the energy density per unit parameter ζ. Note that for the sake of simplicity we dropped the sub-index 0 from the quantities calculated at the throat. Particular examples of calculations for the energy U are given as follows.

$5.1 m=3$

The first case which we would like to study is the minimum index for m which is $m=3$. We find that

$$
\begin{equation*}
\sigma=\frac{3 \sqrt{2}}{32 \pi \sqrt{(1+2 \cos \zeta)^{2}(1-\cos \zeta)}} \tag{44}
\end{equation*}
$$

which is clearly positive everywhere. Knowing that the period of the curve (38) is 2π we find that σ is singular at the possible roots of the denominator i.e., $\zeta=$ $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi$. We note that although σ diverges at these points the function that must be finite everywhere is u which is given by

$$
\begin{equation*}
u=\frac{3 \sqrt{2} \sqrt{(1+2 \cos \zeta)^{2}(1-\cos \zeta)}}{16 \pi \sqrt{5-12 \cos \zeta+16 \cos ^{3} \zeta}} \tag{45}
\end{equation*}
$$

The situation is in analogy with the charge density of a charged conical conductor whose charge density at the vertex of the cone diverges while the total charge remains finite. In Fig. 3 we plot σ and u as a function of ζ which clearly implies that u is finite everywhere leading to the total finite energy $U_{3}=0.099189$.

$5.2 m=4$

Next, we set $m=4$ where one finds

$$
\begin{equation*}
\sigma=\frac{1}{6 \pi \sqrt{\sin ^{2}(2 \zeta)}} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\frac{\sqrt{\sin ^{2}(2 \zeta)}}{8 \pi \sqrt{1-3 \cos ^{2} \zeta+3 \cos ^{4} \zeta}} \tag{47}
\end{equation*}
$$

Fig. 4 depicts σ and u in terms of ζ and similar to $m=3$, we find $\sigma>0$ and u finite with the total energy given by $U_{4}=0.24203$.

As one observes $U_{4}>U_{3}$ which implies that adding more cusps to the throat increases the energy needed. This is partly due to the fact that the total length of the hypocycloid is increasing as m increases such that $\ell_{m}=\frac{8(m-1)}{m}$ with $B=1$. This pattern goes on with m larger and in general

$$
\begin{equation*}
u=\frac{(m-2)^{2} \sqrt{(\cos \zeta-\cos (m-1) \zeta)^{2}}}{8 \pi \sqrt{2} \sqrt{\Psi}} \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& \Psi=m^{2}-2(m-1) \cos ^{2}(m-1) \zeta \\
& -(m-2)^{2} \cos \zeta \cos (m-1) \zeta- \\
& \quad m^{2} \sin (m-1) \zeta \sin \zeta-2(m-1) \cos ^{2} \zeta \tag{49}
\end{align*}
$$

Table 1 shows the total energy U_{m} for various m. We observe that U_{m} is not bounded from above (with respect to m) which means that for large m it diverges as $U_{m} \approx \frac{m}{2 \pi}$.

Therefore to stay in classically finite energy region one must consider m to be finite.

m	3	4	5	10	50	100
U_{m}	0.099189	0.24203	0.39341	1.1767	7.5351	15.492

6 Conclusion

$>$ The flare-out conditions prevents wormholes to be physical.
$>$ Thin-shell wormholes allows to locate matter source at the location of the throat.
$>$ Changing the geometry of the throat in thin-shell wormholes may let the energy condition to be satisfied.
$>$ In 2+1-dimensions, a very simple example has shown that such physical wormholes are possible.
$>\ln 3+1$-dimensions and higher a similar formalism works.

References

[1] S. Habib Mazharimousavi and M. Halilsoy, Phys. Rev. D 90, 087501 (2014).
[2] S. Habib Mazharimousavi and M. Halilsoy, Eur. Phys. J. C 75, 81 (2015).
[3] S. Habib Mazharimousavi and M. Halilsoy, Eur. Phys. J. C 74, 3067 (2014).

