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2 Introduction

� Gravitational waves, black holes and singularities are the predictions of the Ein-
stein�s Theory of Relativity, as a consequence of the solution to the Einstein�s
equations.

� These three seemingly unrelated topics of General Relativity are contained in the
nonlinear interactions of gravitational waves. Namely, Colliding Gravitational
Plane Waves. ( J. B. Gri¢ ths, Colliding plane waves in general relativity, Oxford
University Press (1991) )

� Gravitational waves are described as the ripples in the fabric of spacetime which
propagates at the speed of light.





� The formulation of the problem of Colliding Gravitational Plane Waves requires
to devise the whole spacetime into four distinct regions.





� Singularities: Are described as "end points" or incomplete geodesics for timelike
or null trajectories followed by classical particles.

� According to Ellis and Schmidt (Gen. Rel. Grav. 8, 915, 1977): Classical
curvature singularities are grouped as scalar, nonscalar and quasiregular.

� Singularity theorems are silent about the "nature" of the singularity.

i Spacelike character

ii Timelike character

iii Null character



� Naked singularity: Visible to asymptotic observers ! Forms a threat to cosmic
censorship hypothesis.



3 Brief Review of Chandrasekhar and Xanthopoulos

Solution

( Ref: Proc. Roy. Soc. A, 408, 175-208,1986)

The adopted line element for the description of the CGW is the Szekeres line element
given by,

ds2 = 2e�Mdudv � e�U
n�
eV dx2 + e�V dy2

�
coshW � 2 sinhWdxdy

o
; (1)

in which M = M(u; v); U = U(u; v); V = V (u; v) and W = W (u; v) are the
metric functions to be found, all depends on the null coordinates u and v in the
region of interaction.



The vacuum Einstein equations governing the solution to the metric functions are
derived by varying the following Lagrangian,

L = e�U
n
MuUv +MvUu + UuUv � VuVv cosh

2W �WvWu

o
; (2)

The vacuum Einstein�s equations are:



Uuv = UuUv; (3)

2Uvv = U2v +W 2
v + V 2v cosh

2W � 2UvMv; (4)

2Uuu = U2u +W 2
u + V 2u cosh

2W � 2UuMu; (5)

2Vuv = UuVv + UvVu � 2 (VuWv + VvWu) tanhW; (6)

2Muv = �UuVv +WvWu + VuVv cosh
2W; (7)

2Wuv = UuWv + UvWu + 2VuVv sinhW coshW: (8)



The set of the above �eld equations can be solved by employing the Ernst formalism
(Ref:Phys Rev., 167, 1175-1178, (1968) ). In doing this, the following complex
valued function is de�ned,

Z = �+ iq2; (9)

where

� =
e�V

coshW
; and q2 = e�V tanhW; (10)

such that the line element (1) becomes

ds2 = 2e�Mdudv � e�U
"
�dy2 +

1

�
(dx� q2dy)

2

#
: (11)

By de�ning a new set of coordinates,

� = u
q
1� v2 + v

q
1� u2; and � = u

q
1� v2 � v

q
1� u2;

(12)



the metric that describes the collision of gravitational waves in the region of interac-
tion is transformed to the following form,

ds2 = e�+�3
p
�

"
(d�)2

�
� (d�)

2

�

#
�
p
��

"
� (dy)2 +

1

�
(dx� q2dy)

2

#
; (13)

where � de�nes the time from the instant of the collision, � de�nes the distance in
the normal direction to the spacelike (x; y)� planes with,

� = 1� �2; and � = 1� �2; (14)

Consequently, the metric that describes the collision of gravitational waves is given
by

ds2 = X

"
(d�)2

�
� (d�)

2

�

#
���X

Y
dy2 � Y

X
(dx� q2dy)

2 ; (15)



where

X = (1� p�)2+q2�2; Y = 1�
����Ey����2 = 1�p2�2�q2�2 = p2�+q2�;

(16)
and

q2 =
2q

p (1 + p)
� 2q� (1� p�)

pY
; (17)

The Petrov classi�cation of the metric (15), as is shown by CX is type - D. Calculations
for the Weyl scalar with a proper tetrads reveals the only nonvanishing scalar as

	2 =
1

2 (1� p� � iq�)3
: (18)

The Weyl scalar 	2, in the terminology of the CGW is interpreted as the Coulomb
component and arises as aresult of the non-linear interaction. The unboudedness of



	2 indicates the existence of the curvature singularity. The focussing hypersurface
corresponds to � = 1; for the metric (15). And hence, the behaviour of 	2 is �nite
which indicates Killing - Cauchy horizon instead of a curvature singularity.

3.1 Extension of the Interaction Region into Incoming Regions

In order to �nd the wave pro�les that participate in the collision, the metric obtained in
the interaction region should be extended to the incoming regions. The approaching
wave in one of the plane symmetric Region II (u � 0; v < 0) is obtained by dropping
the v in the metric (15). This is achieved by the substitution � = � = sin (u�(u)) ;

so that the metric functions take the form

X(u) = 1� 2p sinu+ sin2 u; Y (u) = � = � = cos2 u; (19)



q2(u) =
2q

(1 + p)
[(1 + p) sinu� 1] : (20)

in which as described above u is implied with the step function. Hence, the metric
in Region II in terms of the null coordinate u can be expressed as

ds2 =
2X(u)p
1� u2

dudv �
�
1� u2

� "
X(u)dy2 +

1

X(u)
(dex� 2q sinudy)2# ; (21)

where

ex = x+
2q

(1 + p)
y: (22)



The plane symmetric metric (21) has a single curvature tensor component which
describes the pro�le of the incoming gravitational wave given by

	4 = � (p� iq) � (u)� 3 (X � 2iq sinu)

X4
q
X2 + 4q2 sin2 u

(1� p sinu� iq sinu)3

(p+ iq)2
�(u); (23)

in which � (u) stands for the Dirac delta function and X = X(u) is given (19). Con-
sequently, the incoming wave is a composition of an impulsive and shock gravitational
waves. Similar incoming wave pro�le 	0 (v) from the Region III (u < 0; v � 0) is
obtained by the substitution � = �� = sin (v� (v)) ; which will not be given.



3.2 CX - Duality leading to the Kerr Metric

Applying the following transformations to the metric (15) which describes the inter-
action region of the collision of impulsive and shock gravitational waves;

t =M

 
x� 2q

p (1 + p)
y

!
; � =

Mp
M2 � a2

y , � = � (M � r)p
M2 � a2

; � = cos �;

(24)
with

p = �
p
M2 � a2

M
; q = � a

M
; and M2 > a2; (25)

such that p2 + q2 = 1: We have the correspondence, accordingly



1� p� =
r

M
; 1� �2 = �

~�

M2 � a2
; (26)

in which ~� stands for the horizon function

~� = r2 � 2Mr + a2 = (r � r�) (r � r+) : (27)

These substitutions transform the metric (15) to the following form,

M2ds2 =

 
~�� a2 sin2 �

�2

!"
dt+

2aMr sin2 �
~�� a2 sin2 �

d�

#2

��
2

~�

h
dr2 + ~�d�2

i
�
"
~��2 sin2 �
~�� a2 sin2 �

#
d�2; (28)



where �2 = r2 + a2 cos2 �; and the constants M and a represents the emergent
parameters in the local isometry for mass and rotation, respectively. The roots of ~�,
namely r+ and r� are the event (outer) and Cauchy (inner) horizons, respectively.
The only non zero Weyl scalar in these coordinates is given by

	2 = �
M

(r � ia cos �)3
:

From this transformation, we conclude that the region of interaction is locally iso-
metric to the region in between the inner and outer horizon of the Kerr black hole.
Figure 2, illustrates the region which is identical both in Kerr black hole and in the
interaction region of the CGW.





3.3 Timelike Kerr naked singularity

In Boyer - Lindquist coordinates (t; r; �; �) ; the Kerr metric can be written as,

ds2 = �
~�

�2

h
dt� a sin2 �d�

i2
+
�2

~�
dr2 + �2d�2 +

sin2 �

�2

h
adt�

�
r2 � a2

�
d�
i2
;

(29)
If the rotational parameter dominates the mass parameter (over spinning case, a >
M), there are no horizons and the timelike naked singularity at r = 0 and � = �=2

is developed for asymptotic observers. The metric (29) for the particular case of
M = 1 is reduced to the following form, in the equatorial plane � = �=2,

ds2 = �
�
1� 2

r

�
dt2� 4a

r
dtd�+

r2

��
dr2+ r2d�2+

 
r2 + a2 +

2a2

r

!
d�2; (30)



in which �� = r2 + a2 � 2r; and the ranges of the coordinates varies as

0 � r � 1; 0 � � � �; 0 � � < 2�: (31)



4 Quantum Probes of Spacetime Singularities

� The scale where the singularities are forming is very small (smaller than the
Planck scale), so that the classical general relativity methods in the resolution of
the singularities are expected to be replaced by the quantum theory of gravity.

� Alternative methods in healing the singularities are always attracted the atten-
tions

i String theory ( G. T. Horowitz, New J. Phys. 201, 2005; gr-qc/0410049)

ii Loop quantum gravity (A. Ashtekar, J. Phys. Conf. Ser. 189, 2009; arXiv:0812.4703)

iii Wave probe: This method is introduced by Wald (R. M. Wald, "Dynamics
in nonglobally hyperbolic, static sapce-times", J. Math. Phys. (N.Y.) 21,



2082 (1980)) and developed by Horowitz and Marolf (G. T. Horowitz and
D. Marolf, "Quantum probes of spacetime singularities", Phys. Rev. D 52,
5670 (1995)).

� Horowitz-Marolf (HM) method incorporates with self-adjoint extensions of the
spatial part of the wave operator. The classical notion of geodesics incomplete-
ness with respect to point particle probe is replaced by the notion of quantum
singularity with respect to wave probe.



4.1 De�nition of Quantum Singularity

Consider a static spacetime (M; g��) with a timelike Killing vector �eld ��. Let
t denote the Killing parameter and �t denote a static slice. The Klein�Gordon
equation in this space is

�
r�r� �m2

�
 = 0: (32)

This equation can be written in the form

@2 

@t2
=
q
fDi

�q
fDi 

�
� fm2 = �A ; (33)



in which f = ����� and Di is the spatial covariant derivative on �t. The Hilbert
space H,

�
L2 (�t)

�
is the space of square integrable functions on �t. The operator

A is real, positive and symmetric; therefore, its self-adjoint extensions always exist. If
it has a unique extension AE; then A is called essentially self-adjoint. Accordingly,
the Klein�Gordon equation for a free particle satis�es

i
d 

dt
=
q
AE ; (34)

with the solution

 (t) = exp
�
�it

q
AE

�
 (0) : (35)



If A is not essentially self-adjoint, the future time evolution of the wave function (35)
is ambiguous. Then the HM criterion de�nes the spacetime as quantum mechanically
singular. However, if there is only a single self-adjoint extension, the operator A is
said to be essentially self-adjoint and the quantum evolution described by Eq.(35)
is uniquely determined by the initial conditions. According to the HM criterion, this
spacetime is said to be quantum mechanically non-singular.

The problem now is to count the number of extensions of the operator A. This is
done by using the concept of de�ciency indices discovered by Weyl (Math. Ann.,
68, 220-269, (1910).) and generelized by von Neumann (Math. Ann., 102, 49-
131, (1929)) (see (Phys. Rev. D 60, 104028 (1999).) for a detailed mathematical
background). The determination of the de�ciency indices (n+; n�) of the operator
A, is reduced to count the number of solutions to equation

A � i = 0; (36)



that belong to the Hilbert space H: If there are no square integrable (L2 (0;1))
solutions (i.e., n+ = n� = 0) in the entire space, the operator A posessess a
unique self-adjoint extension and it is called essentially self-adjoint. Consequently,
the method to �nd a su¢ cient condition for the operator A to be essentially self-
adjoint is to investigate the solutions satisfying equation (36) that do not belong to
the Hilbert space H.

The square integrability of the solutions of Eq.(36) for each sign � is checked by
calculating the squared norm of the solution of Eq.(36), in which the function space
on each t = constant hypersurface �t is de�ned as H = f jk  k<1g : The
squared norm can be de�ned as,

k k2 =
Z
�t

p
�ggtt  �d3�t: (37)

The spatial operator A is essentially self-adjoint if neither of the solutions of Eq.(36)
is square integrable over all space L2 (0;1)



4.2 Applications in Static Spacetimes

� G. T. Horowitz and D. Marolf, Phys. Rev. D 52, 5670 (1995) ! M < 0

Schwarzchild solution, charged dilatonic black hole spacetime, fundamental string
spacetimes ( 5- dimensional).

� A. Ishibashi and A. Hosoya, Phys. Rev. D 60, 104028 (1999) ! M < 0

Schwarzchild solution, Reissner-Nordstrom, charged dilatonic black hole space-
time, fundamental string spacetimes ( 5- dimensional).

� D. A. Konkowski and T. M. Helliwell, Gen. Rel. and Grav. 33, 1131, (2001)!
quasiregular spacetimes,



� T. M. Helliwell, D. A. Konkowski and V. Arndt, Gen. Rel. and Grav. 35, 79,
(2003) ! Gal�tsov - Letelier - Tod spacetimes,

� D. A. Konkowski, T. M. Helliwell and C. Wieland, Class. Quantum Grav. 21,
265 (2004) ! Levi-Civita spacetimes,

� T. M. Helliwell and D. A. Konkowski, Phys, Rev. D 87, 104041 (2013) !
Conformally static spacetimes,

� J. P. M. Pitelli and P. S. Letelier, J. Math. Phys. 48, 092501, (2007) !
spherical and cylindrical topological defects,



� J. P. M. Pitelli and P. S. Letelier, Phys. Rev. D 77, 124030 (2008) ! BTZ
spacetimes,

� J. P. M. Pitelli and P. S. Letelier, Phys. Rev. D 80, 104035 (2009)! the global
monopole spacetimes,

� P. S. Letelier and J. P. M. Pitelli, Phys. Rev. D 82, 104046 (2010) ! cosmo-
logical spacetimes,

� O. Unver and O. Gurtug, Phys. Rev. D 82, 084016 (2010)! (2 + 1)�dimensional
matter coupled black hole spacetimes.



� S. Habib Mazharimousavi, O. Gurtug and M. Halilsoy, Int. J. Mod. Phys. D
18, 2061-2082, (2009) ! Lovelock theory

� S. Habib Mazharimousavi, M. Halilsoy, I. Sakalli and O. Gurtug, Class. Quant.
Grav. 27, 105005, (2010) ! Linear dilaton black hole spacetimes

� S. Habib Mazharimousavi, O. Gurtug, M. Halilsoy and O. Unver, Phys. Rev.
D 84, 124021 (2011)! (2 + 1)�dimensional magnetically charged solution in
Einstein-Power-Maxwell theory

� O. Gurtug and T. Tahamtan, Eur. Phys. J. C 72, 2091 (2012)! f(R) gravity



� O. Gurtug, M. Halilsoy and S. Habib Mazharimousavi, JHEP, 1, 178, (2014)!
f(R) global monopole spacetime,

� O. Gurtug, M. Halilsoy and S. Habib Mazharimousavi, Advances in High Energy
Physics, 684731 (2015) ! (2 + 1)�dimensional power law spacetimes.



4.3 Quantum Probes of Timelike Kerr Naked Singularity

The timelike naked singularity for the Kerr metric will be probed with scalar waves
satisfying the Klein-Gordon equation 

1
p
g
@� [

p
gg��@�]� ~m2

!
 = 0; (38)

in which ~m is the mass of the scalar particle. The considered model of solution to the
equation (38) is called a reduced wave equation which admits solution in the form:

 (t; r; �; �) = e�ik�f(t; r; �): (39)

For the metric (30), the Klein- Gordon equation with the assumed solution can be
written as

@2f

@t2
+
4aki

r�

@f

@t
=

��

r2�

(
@

@r

�
��
@

@r

�
+
@2

@�2
�
"
k2
 
1� a2

��

!
+ ~m2r2

#)
f; (40)



where f = f(t; r; �); k can take values of all integers and � = r2 + a2 + 2a2

r :

Timelike naked singularity of the Kerr metric has some interesting properties that is
not shared by the other naked singularities forming in static spacetimes. The Kerr
naked singularity becomes visible to asymptotic observers, if one approaches to the
singularity r = 0 from � = �=2 only. In other words, the surface r = 0; is a disc
with a boundary of a ring singularity. The trajectories that approach to this surface
r = 0 with � 6= �=2; do not fall into the singularity, and hence, all points are regular.

In the assumed solution in equation (39), the constant parameter k which runs for all
integer values, is associated with the orbital quantum number. And, if k = 0 mode
solution is choosen, it corresponds to s-wave which propagates along the equilateral
plane � = �=2. Therefore, in order to probe the Kerr naked singularity with waves,



the only wave mode that encounters with the ring singularity is the s-wave mode.
This coincidence enables the equation (40) separable in time and spatial parts as

@2f

@t2
=

��

r2�

(
@

@r

�
��
@

@r

�
+
@2

@�2
� ~m2r2

)
f; (41)

and the spatial wave operator A which will be investigated for a unique self - adjoint
extensions has a form of

A = �
��

r2�

(
@

@r

�
��
@

@r

�
+
@2

@�2
� ~m2r2

)
: (42)

The problem now is to count the number of extensions of the operator A.

A � i = 0; (43)

If there are no square integrable (L2 (0;1)) solutions (i.e., n+ = n� = 0) in the
entire space, the operator A posessess a unique self-adjoint extension and it is called
essentially self-adjoint.



The solution to Eq.(43) is obtained by assuming the solution in separable form  =

R (r)Y (�) ; which yields the radial equation as

R00 +
2 (r � 1)

��
R0 � 1

��

�
r2
�
~m2 � i�

��

�
+ c

�
R = 0; (44)

in which prime denotes the derivative with respect to r and c is a separation constant.

The spatial operator A is essentially self-adjoint if neither of the solutions of Eq.(44)
is square integrable over all space L2 (0;1) : The behavior of the Eq.(44) near r ! 0

and r !1 will be considered separately.



4.3.1 The case of r ! 0 :

In the case when r ! 0; the Eq.(44) simpli�es to,

R00 � 2

a2
R0 � c

a2
R = 0: (45)

If the separation constant c > � 1
a2
, then the solution is

R(r) = er=a
2
�
C1e

�1r=a
2
+ C2e

��1r=a2
�
; (46)

in which �1 =
p
1 + ca2: If the separation constant c < � 1

a2
; then �1 ! i�1;

where �1 is arbitrary constant and the solution is

R(r) = er=a
2
�
C3e

i�1r=a
2
+ C4e

�i�1r=a2
�
; (47)



in which Ci (i = 1; 2; 3; 4) are the integration constants.

The square integrability of the solution (46) and (47) are checked by calculating the
squared norm de�ned in equation (37) in the limiting case of the metric (20) when
r ! 0; which is given by

kRk2 �
Z const:
0

r5=2 jRj2 dr: (48)

The analysis has revealed that, if the separation constant c < � 1
a2
, the solution

(47) is square integrable, since kRk2 <1; thus, the solution belongs to the Hilbert
space. But, there is a speci�c case for c > � 1

a2
; such that if the separation constant

is chosen very large; then, this speci�c solution fails to satisfy square integrability
condition, i.e. kRk2 !1:



4.3.2 The case of r !1 :

When r !1; the Eq.(44) reduces to

R00 +
2

r
R0 �

�
~m2 � i

�
R = 0; (49)

whose solution is given by

R(r) =
1

r
(C5 sinh (�2r) + C6 cosh (�2r)) ; (50)

in which �2 =
p
~m2 � i; here C5 and C6 are the integration constants. The square

integrability is checked with the following norm written for the case r !1;

kRk2 �
Z 1
const:

r2 jRj2 dr !1 (51)



In view of these results; if the separation constant c > � 1
a2
and is allowed to take large

values, it is shown that there is no square integrable solution to the equation (44) for
the entire space. Hence, the de�ciency indices n+ = n� = 0 . This result indicates
that for this speci�c wave mode solution, the spatial part of the wave operator A
has a unique self-adjoint extension and the future time evolution of this speci�c wave
becomes possible. Consequently, the occurence of timelike naked singularity in the
Kerr metric remains quantum regular when probed with quantum waves obeying the
Klein-Gordon equation.



5 Open Problems

� Dynamics in stationary, non-globally hyperbolic spacetimes

i Klein-Gordon equation gives

@2'

@t2
+B

@'

@t
+A' = 0 (52)

ii Generally, the neat division of the problem into space and time parts is not
possible.

iii Initial formulation is considered by Itai Seggev, CQG, 21, 2651-2668 (2004).

� Dynamics in time-dependent spacetimes.



6 Concluding Remarks

� The local isometry between a Kerr black hole and a CGW spacetime is known as
the CX duality. A CH forming CGW spacetime transforms locally by a coordinate
transformation into a black hole metric. Is this a coincidence ?. Can such a
duality be valid for all black holes ?. In our opinion the root of such a duality
traces back to the wave - particle duality and must be related to quantum gravity.

� the formation of the timelike Kerr naked singularity in the over spinning case is
analysed in view of quantum mechanics with the criterion proposed by HM. This
singularity is probed with waves obeying the Klein-Gordon equation. Analysis
has shown that, the spatial derivative operator is essentially self-adjoint, for the
waves having the separation constant c � � 1

a2
: Hence, the classical timelike

naked singularity is healed and becomes quantum regular when probed with
waves described by the Klein-Gordon equation.
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