Measurement of the W-Helicity in $t\bar{t}$ Events Using CMS Detector at the LHC

Maryam Zeinali on behalf of the CMS Collaboration

School of Particles & Accelerators, Institute for Research in Fundamental Sciences (IPM)

The 2nd IPM Meeting on LHC Physics

W-Polarization at 7 TeV

- W-Helicity Measurement in $t\bar{t}$ Events with Di-Leptons
- W-Helicity Measurement in $t\bar{t}$ Events with Lepton+Jets

W-Polarization at 8 TeV

• W-Helicity Measurement in $t\bar{t}$ Events with Lepton+Jets

W-Polarization in Theory

- At NNLO, the SM predictions for the W-boson helicity fractions are¹
 - $F_0 = 0.687 \pm 0.005$
 - $F_L = 0.311 \pm 0.005$
 - $F_R = 0.0017 \pm 0.0001$
- This can be understood since in the limit of massless b-quarks, right-handed W-bosons are suppressed

¹Phvs.Rev.D81:111503.2010

W-Polarization in Experiment

• In order to estimate the W-boson helicity fractions from experimental data, one needs to find the distribution of $\cos\theta^*$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}(1-\cos\theta^*)^2 F_L + \frac{3}{8}(1+\cos\theta^*)^2 F_R + \frac{3}{4}\sin^2\theta^* F_0$$

 θ* is defined as the angle in the W-boson rest frame between the direction opposite to the top-quark and the direction of lepton

$t\bar{t}$ Events Are Selected to Measure W-Helicity Fractions

- At the LHC, $t\bar{t}$ events are mainly produced via gluon-gluon fusion
- Since $V_{tb} \sim 1$, almost all the time a top-quark decays to a W-boson and a b-quark
- W-boson decays into hadrons in 67% and into leptons in 33%

Probability for a $t\bar{t}$ Event Decaying into Di-Leptons

- In this analysis, di-lepton $t\bar{t}$ events are selected
- The probability for a top-pair event decaying into di-leptons is found to be $33\%\times33\%{\sim}11\%$
- Despit of very small probability, but still very clean sample at the end

Top Pair Branching Fractions

Signatures of Di-Lepton $t\bar{t}$ Decay

- 2 neutrinos yields to a large Missing Transverse Energy (MET) containing 6 unknown parameters
- 2 leptons low QCD backgrounds
- 2 b-quark jets at detector-level low W+jets backgrounds
- 4 mass constraints
 - 2 top-quark mass constraints
 - 2 W-boson mass constraints
- Low production rate (11%) but still clean signature

Finding ν and $\bar{\nu}$ Four-Vectors from Kinematic Constraints

• The four-vector of neutrinos are found by solving the 6 equations

$$\begin{split} (E_T^{\text{miss}})_x &= p_{\nu_x} + p_{\bar{\nu}_x} \\ (E_T^{\text{miss}})_y &= p_{\nu_y} + p_{\bar{\nu}_y} \\ m_{W^+}^2 &= (E_{l^+} + E_{\nu})^2 - \sum_{i=x,y,z} (p_{l_i^+} + p_{\nu_i})^2 \\ m_{W^-}^2 &= (E_{l^-} + E_{\bar{\nu}})^2 - \sum_{i=x,y,z} (p_{l_i^-} + p_{\bar{\nu}_i})^2 \\ m_t^2 &= (E_b + E_{l^+} + E_{\nu})^2 - \sum_{i=x,y,z} (p_{b_i} + p_{l_i^+} + p_{\nu_i})^2 \\ m_t^2 &= (E_{\bar{b}} + E_{l^-} + E_{\bar{\nu}})^2 - \sum_{i=x,y,z} (p_{\bar{b}_i} + p_{l_i^-} + p_{\bar{\nu}_i})^2 \end{split}$$

- Polynomial equation of degree 4 \rightarrow maximally four solutions for the ν and $\bar{\nu}$
- The ambiguity is resolved by choosing the solution minimizing the mass of top pair system

Data and MC Samples

• Summer11 MC data sets

Sample Name	σ^{NLO} (pb)
TTJets_TuneZ2_7TeV-madgraph	157.5
WJetsToLNu_TuneZ2_7TeV-madgraph-tauola	31314.0
DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola	3048.0
DYJetsToLL_M-10To50_TuneZ2_7TeV-madgraph	9611.0
T_TuneZ2_tW -channel-DR_7TeV-powheg-tauola	7.8
Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauola	7.8
$WWJets To 2L2 Nu_T une Z2_7 TeV-madgraph-tauola$	4.65
WZJetsTo3LNu_TuneZ2_7TeV-madgraph-tauola	0.6
ZZ_TuneZ2_7TeV_pythia6_tauola	4.65
T_TuneZ2_t-channel_7TeV-powheg-tauola	42.5
Tbar_TuneZ2_t-channel_7TeV-powheg-tauola	22

 $\bullet\,$ Run2011A and Run2011B data are analyzed, corresponding to an amount equal to 4.6 $\rm fb^{-1}$

Selection Cuts

- 1 good vertex is required
- At least 2 opposit-charge leptons with $p_T>20~{\rm GeV}$ within the tracker acceptance
- Same-flavour events under the Z-peak $76 < M_{ll} < 106$, are vetoed
- At least 2 PF jets with $p_T > 30$ GeV within the tracker acceptance
- Same(Opposit)-flavour events should have $E_T^{miss} > 30(20)$ GeV
- At least one of the jets should be tagged as b-jet

Cut Flow Table

- Various scale factors are applied, including pile-up reweighting, b-tagging, trigger and lepton efficiencies
- \bullet DY normalization factor obtained after cutting on $E_T^{\rm miss}$ is also taken into account
- The cut flow results for all three di-lepton channels are combined and can be found in the table below

Dataset	Njets	E_T^{miss}	NBjets	$N_{t\bar{t}}$	
$t\overline{t}$	$13569.6{\pm}50.4$	12160.2 ± 47.7	9075.0±42.3	8692.3±32.7	
Single top tW	708.2±7.9	631.4±7.4	410.4±6.2	357.3±4.5	
DY $M_{ll} > 10 GeV$	$16193.2{\pm}106.7$	2841.3 ± 41.7	$206.9{\pm}11.8$	167.0±9.5	
WW	399.4±2.6	9.4±2.6 353.1±2.4		0.7 22.8±0.5	
Single top t	14.6±1.0	12.4±0.9	7.8±0.8	6.5±0.6	
W+jets	553.3±32.2	448.2±28.8	33.0±7.4	17.0±4.4	
WZ	89.6±0.4	70.6±0.4 3.9±0.1		2.7±0.1	
ZZ	69.3±0.6	15.4±0.3	2.2±0.1	$1.6{\pm}0.0$	
Total(Simulation)	31597.3±122.7	16532.7±70.0	9771.3±45.0	9267.3±34.7	
Data	29982	16257	9888	9341	

Data-Driven Estimation of Drell-Yan(DY) Backgrounds

- To reduce the DY contribution in a di-lepton data sample, events with $76 < M_{ll} < 106~{\rm GeV}$ are excluded from the analysis
- The predicted simulation outside the veto region is normalized by the fraction of data over prediction inside the control region

$$N_{DY}^{out \ (est)} = \frac{N_{DY \ Data}^{in}}{N_{DY \ MC}^{in}} \times N_{DY \ MC}^{out}$$

• Inside the control region, non-DY data events which is estimated from $e\mu$ channel, should be subtracted from DY data events

$$N_{DY \ Data}^{in} = (N_{ee(\mu\mu) \ Data}^{in} - N_{e\mu \ Data}^{in} \times \frac{1}{2} \sqrt{(\frac{N_{ee(\mu\mu) \ Data}^{int}}{N_{\mu\mu(ee) \ Data}^{int}}))}$$

- The correction factor multiplied by $N_{e\mu\ Data}^{in}$ is due to the difference in efficiency to reconstruct and select a muon compared to an election
- The obtained results are $1.56\pm0.04(ee),\,1.09\pm0.04(\mu\mu)$ and $1.31\pm0.06(e\mu)$

Data-MC Comparison

Constructing Angular Distribution

 $\bullet\,$ Combined distribution of $\cos\theta^*$ for all di-lepton channels

W-Helicity Measurement

Fit Method

• A likelihood function is introduced

$$\mathcal{L}(\vec{F}) = \prod_{bin \ i} \frac{N_{MC}(i;\vec{F})^{N_{data}(i)}}{(N_{data}(i))!} exp(-N_{MC}(i;\vec{F}))$$

where

$$\begin{split} N_{MC}(i;\vec{F}) &= N_{t\bar{t}}(i;\vec{F}) + N_{BKG}(i) \\ N_{t\bar{t}}(i;\vec{F}) &= \mathcal{F}_{t\bar{t}}[\sum_{t\bar{t} \ events, bin \ i} W(\cos\theta^*_{gen};\vec{F})] \\ N_{BKG}(i) &= N_{DY}(i) + N_{W+jets}(i) + N_{di-bosons}(i) + N_{single \ top}(i) \end{split}$$

• and the weight function is defined as

 $W(\cos\theta_{gen}^*;\vec{F}) = \frac{\frac{3}{8}F_L(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0\sin^2\theta_{gen}^* + \frac{3}{8}F_R(1+\cos\theta_{gen}^*)^2}{\frac{3}{8}F_L^{SM}(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0^{SM}\sin^2\theta_{gen}^* + \frac{3}{8}F_R^{SM}(1+\cos\theta_{gen}^*)^2}$

 The W-boson helicity fractions are those which maximize the likelihood function

Measured W-Heliciy Fractions in Di-Leptonic $t\bar{t}$ Events

W-heliciy @ 7 TeV, di-leptonic channel

$$F_L = 0.288 \pm 0.035(\text{stat}) \pm 0.040(\text{sys})$$

 $F_0 = 0.698 \pm 0.057(\text{stat}) \pm 0.063(\text{sys})$
 $F_R = 0.014 \pm 0.027(\text{stat}) \pm 0.042(\text{sys})$
 $\mathcal{F}_{t\bar{t}} = 1.034 \pm 0.016$

- The F_R is found from the constraint $F_L + F_0 + F_R = 1$
- They are in agreement with the SM expectations
- No BSM effect is found
- Several statistical tests are performed to check if the method works fine
 - Linearity test: the central values are truly estimated
 - Pull distribution: there is no bias on uncertainties

W-Polarization: Systematics

	Fitting		
	F_L , F_0		
Systematic Source	$\pm \delta F_L$	$\pm \delta F_0$	
Top QScale	0.027	0.051	
Top Mass	0.016	0.003	
WZ QScale	0.013	0.026	
DY XSection	0.009	0.014	
W XSection	0.000	0.002	
Single top TW XSection	0.002	0.008	
JES	0.01	0.006	
Pile Up	0.014	0.017	
PDF	0.004	0.005	
Total	0.040	0.063	

Selection Cuts in $t\bar{t}$ Events with Lepton+Jets ¹

- Exactly one tight lepton, where tight muons(electrons) have $p_T>25(30)$ Gev and $|\eta|<2.1(2.5)$
- Veto events with additional looser leptons
- At least 4 jets with $p_T > 30~{\rm GeV}$ within the tracker acceptance
- At least one (or at least two) jets passing the b-tag CVSM criteria for the 1 btag (2 btags) analysis
- \bullet Requiring leptonic W transverse mass $30 < M_T < 200$ GeV 2

²No explicit cut on $E_T^{\rm miss}$ is applied since it has a strong correlation with $\cos \theta^*$. An explicit requirement on $E_T^{\rm miss}$ would imply a loss in efficiency at high values of $\cos \theta^*$, which is the most sensitive region for the determination of F_R . ¹TOP-11-020

Analysis Overview: Neutrino Solution and Jet Combination

- Two(Three) jets are assigned to the W(top), if the invariant mass of the two(three)-jet system is compatible with the W(top) mass
- A value of neutrino p_z is searched so that the invariant mass formed with the neutrino four-vector, comprising of $E_T^{\rm miss}$ with unknown p_z component, and the lepton is compatible with the W mass
- A χ^2 method is used to select a best jet combination

$$\begin{split} \chi^2_{\text{comb}} &= \left(\frac{m_t - m_t^{\text{ref}}}{\sigma_{m_t}}\right)^2 + \left(\frac{m_{\bar{t}} - m_t^{\text{ref}}}{\sigma_{m_{\bar{t}}}}\right)^2 + \left(\frac{M_W^{\text{lep}} - 80.4}{\sigma_{M_W^{\text{lep}}}}\right)^2 + \left(\frac{M_W^{\text{had}} - 80.4}{\sigma_{M_W^{\text{had}}}}\right)^2 \\ &+ \sum_{i=1,4} -2\ln p_i(disc|f) \end{split}$$

- The term $p_i(disc|f)$ is build for each jet as the probability of the given jet with flavour f, given its measured value of CSV discriminant
- The configuration of lepton, neutrino and jets minimizing $\chi^2_{\rm comb}$ is used to reconstruct $t\bar{t}$ system

Analysis Overview: Kinematic Fitter

- Once the best combination is found, a constrained kinematic fit is perfomed leading to a better determination of the unmeasured neutrino p_z and a more accurate reconstruction of the $t\bar{t}$ system
- \bullet The fitted four-momentum of the lepton $p^{\rm fit,lep}$ and jets $p^{\rm fit,jet}$ are obtained minimizing a χ^2

$$\begin{split} \chi^2 &= \left(\frac{m_t - m_t^{\text{ref}}}{\sigma_{m_t}}\right)^2 + \left(\frac{m_{\bar{t}} - m_t^{\text{ref}}}{\sigma_{m_{\bar{t}}}}\right)^2 + \left(\frac{M_W^{\text{lep}} - 80.4}{\sigma_{M_W^{\text{lep}}}}\right)^2 + \left(\frac{M_W^{\text{had}} - 80.4}{\sigma_{M_W^{\text{had}}}}\right)^2 \\ &+ \sum_i \left(\frac{p_i^{\text{fit,lep}} - p_i^{\text{lep}}}{\sigma_{p_i^{\text{lep}}}}\right)^2 + \sum_j \sum_i \left(\frac{p_i^{\text{fit,jet}_j} - p_i^{\text{jet}_j}}{\sigma_{p_i^{\text{jet}_j}}}\right)^2, \end{split}$$

• The same reweighting technique, as described before, is used to extract W-helicity fractions

Data-Driven Background Estimation: DY

- A control sample is defined applying the same selection criteria, except that events containing an additional lepton of the same flavour and opposite charge are selected instead
- The distribution of the invariant mass of the dilepton system for data and simulation in the control region is shown for electrons and muons

- The normalization of the DY simulated sample was fitted to the data inside a window of 20 GeV around the Z mass
- The predicted normalization factor for the DY sample is 1.002 ± 0.113 (electrons) and 0.996 ± 0.093 (muons)

Data-Driven Background Estimation: W+jets

- $\bullet\,$ The contribution from W+jets is determined from the charge asymmetry $N(l^+)-N(l^-)$
- The total number of W+jets events in the sample can be estimated as

 $(N_+ + N_-)^{W+jets}_{\rm data-driven} = R^W_{\pm(\rm MC)} \times (N_+ - N_-)_{\rm data}$ where $(N_+ - N_-)_{\rm data}$ is measured in data (after subtracting single top contamination from simulation)

• $R^W_{\pm(\mathrm{MC})}$ is estimated using simulated events as

$$R_{\pm(\rm MC)} = \frac{(N_{+}^{\rm W+jets} + N_{-}^{\rm W+jets})}{(N_{+}^{\rm W+jets} - N_{-}^{\rm W+jets})}$$

- This method is applied in two bins of jet multiplicity and for events with at least 1-btagged or 2-btagged jets
- The estimated scale factors in, e.g. events with exactly 4 jets, are compatible with one

Cut Flow Table in *tt* Events with Lepton+Jets

- Table below presents the number of data events used in lepton+jets analysis, and predictions from simulation for the $t\bar{t}$ signal and background process for both one and two b-tagged jets requirement
- A very good agreement between data and expected yields is found for both channels, if either 1 or 2 btags are applied

	Electrons			Muons				
Sample	1 tag		2 tags		1 tag		2 tags	
	Selec	KF	Selec	KF	Selec	KF	Selec	KF
W+jets	1647.1	1352.5	234.3	203.3	2179.8	1779.3	350.9	282.0
Single top	721.6	613.2	265.0	223.1	1012.5	872.4	371.9	318.6
DY	221.2	182.2	42.5	33.7	247.4	217.6	42.8	38.3
$tar{t}$ bkg	1343.5	1156.8	628.6	546.8	1979.1	1749.8	928.3	827.8
Sum bkg	3933.4	3304.7	1170.4	1006.9	5418.8	4619.2	1694.0	1466.8
$tar{t}$ sig	11542.1	10958.4	5390.6	5179.2	16185.3	15434.7	7596.7	7321.3
Simulation	15475.4	14263.1	6561.0	6186.1	21604.1	20053.9	9290.7	8788.1
Data	15319	14019	6526	6135	21818	20221	9268	8772

Measured W-Heliciy Fractions in Semi-Leptonic $t\bar{t}$ Events

W-heliciy @ 7 TeV, semi-leptonic channel at least 1 b-tagged jets

 $F_L = 0.322 \pm 0.017 (\text{stat}) \pm 0.022 (\text{sys})$ $F_0 = 0.656 \pm 0.024 (\text{stat}) \pm 0.035 (\text{sys})$

 $F_R = 0.022 \pm 0.013 ({\rm stat}) \pm 0.019 ({\rm sys})$

W-heliciy @ 7 TeV, semi-leptonic channel at least 2 b-tagged jets

$$\begin{split} F_L &= 0.308 \pm 0.022 (\text{stat}) \pm 0.012 (\text{sys}) \\ F_0 &= 0.686 \pm 0.031 (\text{stat}) \pm 0.025 (\text{sys}) \\ F_R &= 0.006 \pm 0.015 (\text{stat}) \pm 0.015 (\text{sys}) \end{split}$$

Measured W-Heliciy Fractions in Semi-Leptonic $t\bar{t}$ Events ¹

W-heliciy @ 8 TeV, semi-leptonic channel

$$\begin{split} F_L &= 0.354 \pm 0.011 (\text{stat}) \pm 0.025 (\text{sys}) \\ F_0 &= 0.655 \pm 0.015 (\text{stat}) \pm 0.018 (\text{sys}) \\ F_R &= -0.009 \pm 0.006 (\text{stat}) \pm 0.020 (\text{sys}) \\ \mathcal{F}_{t\bar{t}} &= 1.034 \pm 0.016 \end{split}$$

¹TOP-13-008

Summary

- The W-helicity measuements in top pair production using 7 TeV and 8 TeV data collected by CMS experiment were presented
- The studies were performed on either single-lepton or di-lepton products of top pair events
- The update on W-helicity measurement using 8 TeV data in di-lepton channel is ongoing
- Measured helicity fractions are in good agreement with predicted Standard Model values