Search for R-Parity violated Supersymmetry at CMS

Batool safarzadeh Second LHC Physics Meeting at IPM (7-11 October)

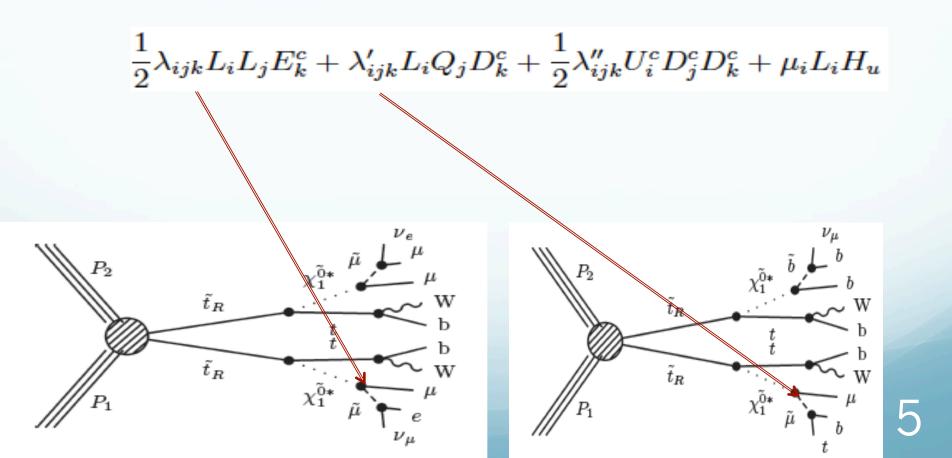
Outline

- Introduction
 - Motivation
- Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags

- Search for RPV SUSY in the 4-lepton final state in pp collisions at 8 TeV
- Conclusion

Supersymmetry and R parity

- Definition R-Parity: R = (-1)^(3B+L+2s) (B)aryon,(L)epton and (s)pin
- R-Parity conserving theory:
 - Super partners produced in pairs.
 - Lightest Supersymmetric particle (LSP) is stable
 - Dark matter candidate
 - Experimental MET signature
- R-Parity Violating (RPV) terms allowed $W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \mu_i L_i H_u$
 - resonant production of SUSY particles
 - unstable SUSY LSP
 - Low MET


 $L_i(Q_j)$ are lepton(quark) SU(2)_L doublet, $E_j(\overline{D}_j, \overline{U}_j)$ are the electron (down- and up-quark) SU(2)_L singlet, $\lambda_{\mu\nu}$, $\lambda_{\mu\nu}^*$, λ

Search For Stop in RPV SUSY

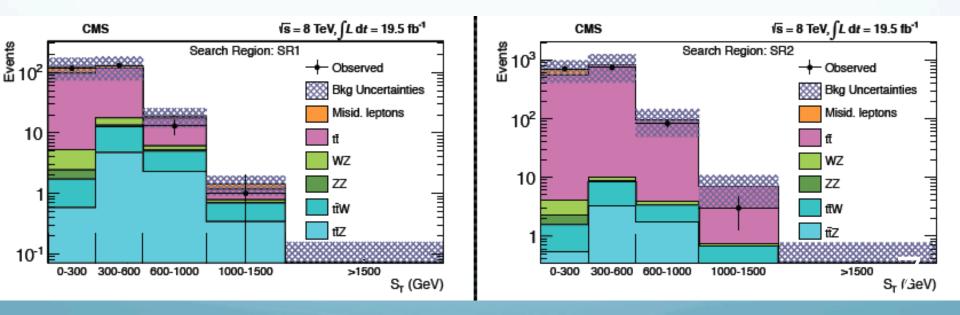
CMS SUS-013-003

Search For Stop in RPV SUSY

 R-parity is violated via either lepton or baryon number violation. Only one of the couplings has a non-zero value

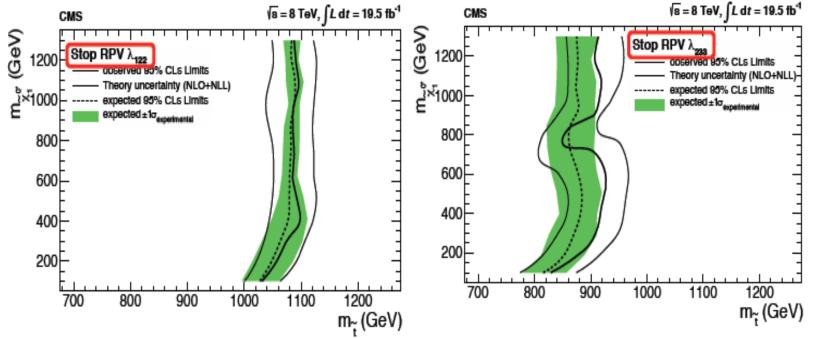
Event Selections

- Search for new physics in events with three or more leptons
 - Bin in number of leptons (electrons + muons + taus)
- At least one b-quark
- Remove events with OSSF (opposite sign, same favor) dilepton mass on Z and below 12 GeV J/ Ψ events
- In stop RPV scenarios with the stop mass close to the top mass → the amount of E_T^{miss} is also really low.
 - Define search regions in different S_T bins


 $S_T = MET + HT + P_T^{leptons}$ MET = Missing Transverse Energy HT = Scalar sum of all selected Jet P_T $P_T^{leptons} =$ Selected leptons P_T

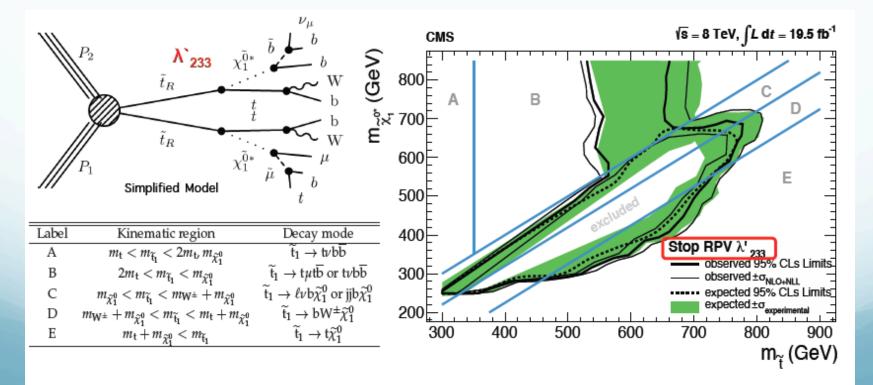
6

Results


Observed and Prdicted Events in all signal regions

SR	NL	f	Nτ	0	< S _T < 300	300	< S _T < 600	600 <	< S _T < 1000	1000) < S _T < 1500		S _T > 1500
				obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
SR1	3	Π	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
SR2	3	П	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
SR3	4		0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
SR4	4		≥1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR5	3		0	-	_	_	_	165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
SR6	3		≥ 1	_	_	_	_	276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
SR7	4		0	-	_	_	_	5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
SR8	4		<u>≥</u> 1	-	_	—	_	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033

Multi-Leptonic Interpretation


Interpret the results in a model with stop-Pair production and λ_{ijk} coupling. $\frac{1}{2} \sum_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \mu_i L_i H_u$

Multi-Leptonic Interpretation

Interpret the results in a model with stop-Pair production and λ'_{233} .

$$\frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda_{ijk}'L_iQ_jD_k^c + \frac{1}{2}\lambda_{ijk}''U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

RPV in Supersymmetry in 4lepton Final State

CMS SUS-013-010

4 Lepton analysis

$$\frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

- concentrate on lepton number violating term $\lambda_{ijk}L_iL_j\bar{e}_k$
 - If LSP is a neutralino, each LSP decays into three leptons, two of which are opposite charge. For every SUSY event expect 4 extra charged prompt leptons and two neutrinos on top of regular content of RC part of the event.
- The dynamic of SUSY production is driven by the RPC part
 - RPC component also drives all following cascade decays of SUSY particles in the event, until a pair of LSP remains in the end.
 - The RPV component then drives decay of the LSP into non-SUSY particles.
- Presence of 4 isolated leptons in the event is alone a strong discriminant for SM processes.
- No MET, S_T and b-quark jet requirement decouple from generic SUSY (RPC) searches.
- ZZ production is the dominant background.

4 Lepton Analysis

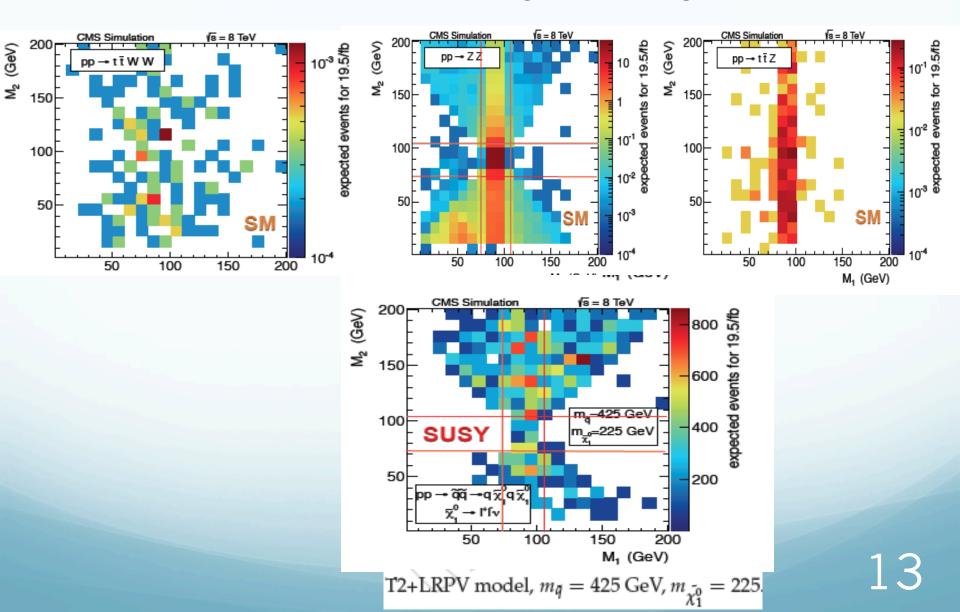
Expected neutralino decay modes for different non-zero

λ -term	neutralino LSP decay mode
$\lambda_{121} = -\lambda_{211}$	$e\mu\nu_e + ee\nu_\mu$
$\lambda_{122} = -\lambda_{212}$	$\mu\mu\nu_e + \mu e \nu_\mu$
$\lambda_{123} = -\lambda_{231}$	$\tau\mu\nu_e + \tau e \nu_\mu$
$\lambda_{131} = -\lambda_{311}$	$e\tau v_e + eev_{\tau}$
$\lambda_{132} = -\lambda_{312}$	$\mu \tau \nu_e + \mu e \nu_{\tau}$
$\lambda_{133} = -\lambda_{331}$	$\tau \tau \nu_e + \tau e \nu_{\tau}$
$\lambda_{231} = -\lambda_{321}$	$e \tau \nu_{\mu} + e \mu \nu_{\tau}$
$\lambda_{232} = -\lambda_{322}$	$\mu \tau \nu_{\mu} + \mu \mu \nu_{\tau}$
$\lambda_{233} = -\lambda_{321}$	$\tau \tau \nu_{\mu} + \tau \mu \nu_{\tau}$

This study relies on prompt electrons and muons, it has the best sensitivity to λ_{121} , λ_{122} , λ_{211} , λ_{212} .

M1: Loop over OSSF pairs, find closest to M_z

M2: Another OS (OF or SF) pair


Define 2D plot (M1 vs M2) for different OS regions! 0 – 75 – 105 – Infinity

- "below Z": M < 76 GeV
- "in Z": 76 < M < 106 GeV
- "above Z": M > 106 GeV

12

Background and Signal

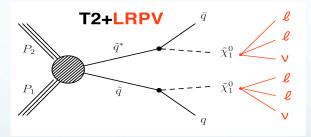
M1 Versus M2 for the Backgrounds and Signal

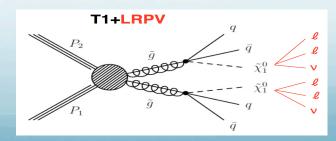
Results

Expected background contributions from different SM processes and observed events in all signal region regions

		$M_1 < 75 \; GeV$	$75 < M_1 < 105 \; GeV$	$M_1 > 105 \; GeV$	
	ZZ	0.76 ± 0.18	15 ± 4	0.30 ± 0.07	
	rare	0.28 ± 0.13	2.7±1.0	0.12 ± 0.05	
$M_2 > 105 \; GeV$	fakes	0.4 ± 0.4	0.7±0.7	0.05 ± 0.05	
	all backgrounds	1.4 ± 0.5	18 ± 4	0.47 ± 0.10	
	observed	0	20	0	
	ZZ	0.10 ± 0.03	150*	0.05 ± 0.01	
	rare	0.12 ± 0.05	2.5 ± 1.2	0.06±0.03	
$75 < M_2 < 105 \ GeV$	fakes	0.3±0.3	0.6±0.6	0.05 ± 0.05	
	all backgrounds	0.52 ± 0.34	153*	0.16 ± 0.06	
	observed	0	160	0	
	ZZ	9.8±2.0	32±8	0.98±0.20	
	rare	0.31 ± 0.14	2.5 ± 1.2	0.011±0.005	
$M_2 < 75 \; GeV$	fakes	0.3±0.3	0.8 ± 0.8	0.06±0.06	
	all backgrounds	10.4 ± 2.0	35±8	1.0 ± 0.2	
	observed	14	30	1	

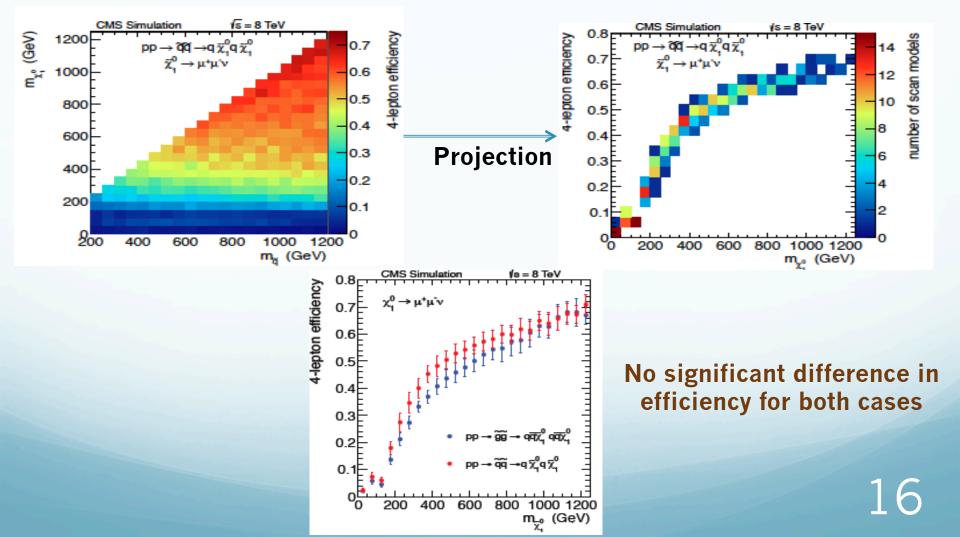
Backgrounds estimation


irreducible SM - from MC fakes - data driven

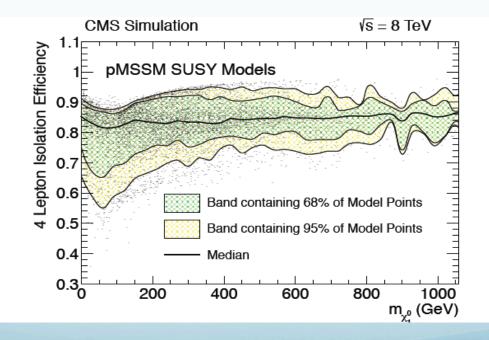

Impact of RPC Underlying events

- Lepton reconstruction efficiency depends on lepton pT and η
- The later distributions for those leptons from LRPV neutralino decays depend from the spectrum of produced neutralinos.
- neutralino spectrum affects M2 : M1 distribution, though the neutralino mass has the most impact on the M2,M1 distribution.

Consider two extreme cases

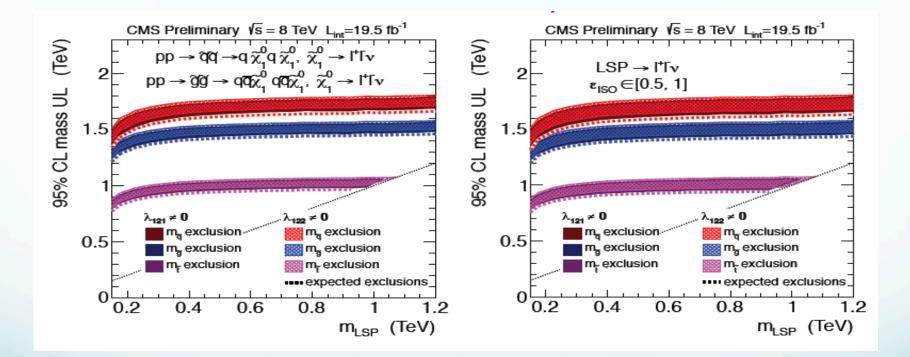

- neutralino is produced in 2-body decay of directly produced squark
 - the most energetic neutralino
- neutralino is produced in the rest
 - the most soft neutralino

Impact of RPC Underlying events


• Efficiency is driven by neutralino mass via signal region masses selection

Impact of RPC Underlying events

• Isolation efficiency for tight leptons from RPV decay depends from the occupancy of the event, depends on the content of underlaying SUSY event


pMSSM model points (~7300), which represents properties of generic MSSM, chosen with flat parameter priors at Electro-weak scale

Efficiency variations well fit a band [0.5, 1]

Interpretation

Mass exclusions for different SUSY production mechanisms

The band in these results covers a wide range of underlying RPC MSSM SUSY physics models

- CMS searches exclude parameter space in a broad set of different models including all three trilinear RPV Yukawa couplings
- No significant excess observed for both multi-lepton final states !
- pMSSM model are used to study the impact of generic component of Rparity violated term signatures !
- Results are applicable to generic set of MSSM SUSY models and simplified models.