

3rd Generation of SUSY @ CMS

Saeid Paktinat

School of Particles and accelerators, IPM On behalf of the CMS Collaboration

IPMLHC2013, Second IPM Meeting on LHC Physics, 7-12 Oct 2013, School of Particles and Accelerators, IPM, Tehran, Iran

Disclaimer

- It is a short review of the CMS reach plan for search for 3rd generation of SUSY, for a complete review <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>
- Here SUSY is just a paradigm of any new physics in which stable neutral particles (e.g. Dark Matter candidates) are produced in the cascade of pairproduced heavy particles
- Some Materials are barrowed from Maria D'Alfonso @ SUSY2013

Why SUperSYmmetry

SM describes a lot of experimental results very precisely, but fermionic loop corrections to higgs mass diverge quadratically: Huge disparity between EW scale and M_{pl} is not natural (Hierarchy Problem)

SUSY introduces new particles that cancel quadratic div and fill the scale between EW and M_{pl} (solves the hierarchy problem).

H

11/10/2013

WIPM Important Features

- Every SM particle has a SUSY partner (sparticle) which are same, but differ in spin by ¹/₂.
 R=(-1)^{2S+3B+L}
- Consider R-parity conservatio

 pair-production of sparticles
- Lightest SUSY particle (LSP) stable
 → dark matter candidate
- Hadron collider: squark/gluino production is dominant (if not too heavy).

COUPPOR Stop/Sbottom Production

Typical cross section stop/sbottom: 2 pb @ 300 GeV 0.025 pb @ 600 GeV

SM TTbar ~ 230 pb

SUSY13, Trieste, 8/29/13

11/10/2013

M.D'Alfonso (CERN)

Saeid Paktinat IPMLHC2013, Tehran

6

Stop Decays

No single signature dominates:

- 1. Fully hadronic high BR, large QCD bkg
- 2. SemiLeptonic moderate BR/bkg
- 3. Dileptonic low BR, small bkg

Single Lepton

- One and only one lepton
- >= 4 jets with >= 1bjet
- Backgrounds

 Wjets, ttbar, single top
 Zjets when a lepton is lost
 Any fake lepton

 M_T can be a discriminator

Data/MC Comparison Data is well modeled in MC.

Ø IPM

Selections

BDT and cut & count

•Different selections for different regions

	$ ilde{\mathfrak{t}} o \mathfrak{t} \widetilde{\chi}_1^0$			$ ilde{\mathfrak{t}} o {\mathfrak{b}} \widetilde{\chi}_1^+$			
		cut-b	vased		cut-based		
Selection	BDT	Low ΔM	High ΔM	BDT	Low ΔM	High ΔM	
Emiss(CaV)	yes	> 150, 200,	> 150, 200,	yes	> 100, 150,	> 100, 150,	
$L_{\rm T}$ (GeV)		250, 300	250, 300		200, 250	200, 250	
$M_{\rm T2}^{\rm W}$ (GeV)	yes		> 200	yes		> 200	
min $\Delta \phi$	yes	> 0.8	> 0.8	yes	> 0.8	> 0.8	
$H_{\mathrm{T}}^{\mathrm{ratio}}$	yes			yes			
hadronic top χ^2	(on-shell top)	< 5	< 5				
leading b-jet $p_{\rm T}$ (GeV)	(off-shell top)			yes		> 100	
$\Delta R(\ell, \text{leading b-jet})$	_			yes			
lepton $p_{\rm T}$				(off shell W)			
11/10/2013 Saeid Paktinat 10							

DIPM Control Regions, 21, 0b

Estimated bkg from MC are normalized to MT peak. Control regions provide the scale factor for MT tail.

No Excess!

Non of the topologies/decay modes

CMS

 $\rightarrow t \tilde{\chi}^{o}_{1}$ BDT1 Tight

0.05

Entries /

500E

400E

300E

200

√s = 8 TeV, ∫Ldt = 19.5 fb⁻¹

◆ Data

■tī*→ ll* ■W+jets ■rare

Event Yields

- Dileptonic ttbar is the main bkg everywhere.
- 1l from ttbar/single top is the next to leading one.
- Rare (ttV, VV, VVV, small x-sec) not negligible.

${ ilde t} o t { ilde \chi}_1^0$							
Sample	BDT1 Loose	BDT1 Tight	BDT2	BDT3	BDT4	BDT5	
$t\bar{t} \to \ell\ell$	438 ± 37	68 ± 11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13	
1ℓ Top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12	
W+jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2	
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2	
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18	
Data	728	104	56	8	2	76	
$\tilde{t} \rightarrow t \widetilde{\chi}_1^0 (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9	
$\tilde{\mathfrak{t}} \to \mathfrak{t} \widetilde{\chi}_1^0 \ (650/50)$	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1	

11/10/2013

Saeiu Paktinat

IPMLHC2013, Tehran

Interpretation in T2tt Scenario

- The results are interpreted in different scenarios.
- Polarized and upolarized tops are considered.

of M² of megajets.

Saeid Paktinat IPMLHC2013, Tehra 0.8

0.5

0.3

500

1000

m₇ = 800 GeV, m₂ = 25 GeV

2000

3000

M_R [GeV]

0.06

0.05

0.03

0.01

11/10/2013

DPM It is an inclusive search, with variety of selections,

targeting different topologies.

	Box	lepton	lepton b-tag kinematic				
		Dilepton Boxes					
MuElo	MuElo	\geq 1 tight electron and	$> 1 h_{tag}$	$(M_R > 300 \text{ GeV} \text{ and } R^2 > 0.15)$ and	> 2 jets		
	WILLIE	\geq 1 loose muon	≥ 10 -lag	$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	≥ 2 jets		
	MuMu	\geq 1 tight muon and	> 1 h-tag	$(M_R > 300 \text{ GeV} \text{ and } R^2 > 0.15)$ and	> 2 jots		
	Within	\geq 1 loose muon	≥ 10 -tag	$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	≥ 2 jets		
	FlaFla	\geq 1 tight electron and	$> 1 h_{tag}$	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and	> 2 jets		
-	Lienie	\geq 1 loose electron	≥ 10 -lag	$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	≥ 2 jets		
-			Single Lep	ton Boxes			
Mul	MuMultilet	\geq 1 tight muon	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and	> 4 jots		
	wuwuutijet			$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	~ + jets		
114	MuJet	\geq 1 tight muon	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and	2 or 3 jets		
5				$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	2 01 0 jets		
Ë k	EleMultiIet	> 1 tight electron	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and	> 4 jets		
ŭ 🗋	Liciviulije			$(M_R > 450 \text{ GeV or } R^2 > 0.2)$			
2	EleIet	> 1 tight electron	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and	2 or 3 jets		
3	Liejet			$(M_R > 450 \text{ GeV or } R^2 > 0.2)$	2 01 0 jets		
žL	Hadronic Boxes						
MultiJ	Multilet	ıltilet none	\geq 1 b-tag	$(M_R > 400 \text{ GeV and } R^2 > 0.25)$ and	> 4 jets		
	Malifet	none		$(M_R > 550 \text{ GeV or } R^2 > 0.3)$			
Ľ	2h-Iet	none	> 2 h-tag	$(M_R > 400 \text{ GeV and } R^2 > 0.25)$ and	2 or 3 jets		
20-jet		none	~ 2 0-tug	$(M_R > 550 \text{ GeV or } R^2 > 0.3)$	2 01 0 jets		

Saeid Paktinat

IPMLHC2013, Tehran

© IPM Summary of the direct stop search

Constraints from Other Searches

- There are some searches, not tuned for 3rd gen, but can constrain the phase space.
- E.g, Same Sign dilepton
 +b. (heavy sbottom)

A classic channel for SUSY search (3I + jets) gets sensitive to 3rd generation after asking for an extra bjet.

CMIS PAS SUS-13-008

 $\alpha_{T} + b$

A QCD safe, hadronic search for SUSY asks for an extra b.

CMIS PAS SUS-12-028

IPMLHC2013, Tehran

CMS

Summary and Conclusion

- Probe *up to* the quoted mass limit
 - CMS has a reach plan to search for 3rd generation of SUSY.
 - Stau is the missing part, will be covered soon.
 - Be tuned for SUSY results in 14 TeV @ 2015.

Data/MC Comparison for BDT

Data is well modeled in MC.

Uncertainties! 1Lepton Stop Search

$t \rightarrow t \tilde{\chi}_1^0$							
Sample	BDT1 Loose	BDT1 Tight	BDT2	BDT3	BDT4	BDT5	
M _T peak data and MC (stat)	1.0	2.1	2.7	5.3	8.7	3.0	
$t\bar{t} \rightarrow \ell^+ \ell^- N_{jets}$ modeling	1.7	1.6	1.6	1.1	0.4	1.7	
$t\bar{t} \rightarrow \ell^+ \ell^-$ (CR- ℓt and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8	
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4	
$t\bar{t} \rightarrow \ell^+ \ell^- (stat)$	1.1	2.8	3.4	7.0	7.4	3.3	
W+jets cross section	1.6	2.2	2.8	1.7	2.7	2.2	
W+jets (stat)	1.1	1.9	2.0	4.6	10.8	5.2	
W+jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6	
1-ℓ Top (stat)	0.4	0.8	0.8	1.4	4.4	1.2	
1-ℓ Top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1	
rare cross sections	1.8	3.0	4.0	8.1	15.7	0.7	
Total	13.4	17.1	19.3	27.8	38.4	20.2	