

Trigger upgrade

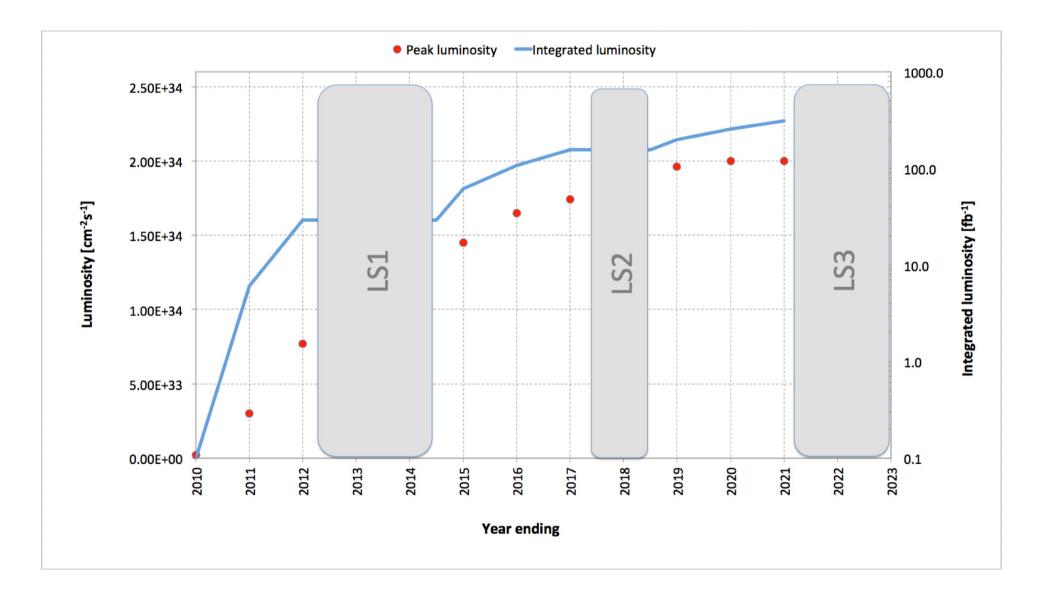
Andrea Bocci - CERN

Evolution of the Trigger constraints

- Run 1: 2010-2012
 - L1T rate limited by detector readout
 - maximum rate: 100 kHz
 - maximum latency: 4 µs
 - HLT reconstruction time limited by online farm processing power
 - maximum average time per event:
 - 2010: 50 ms
 - 2011: 100 ms
 - 2012: 180~200 ms
 - HLT rate limited by offline resources
 - maximum average rate:
 - 2010-11: 300 Hz
 - 2012: 400 Hz "core" + 600 Hz "parking"
- post-LS1: 2015-2016
 - ?
- Phase 2

how much do we have to **increase the limits** of the trigger system ?

• ?


2013.10.09

farm extended in 2011 and 2012, improved configuration

"hard coded" in the readout electronics

increased offline resources, introduce data parking pre-LS1

What we can expect post-LS1

Data taking scenarios

- 2012
 - collision energy
 - peak instantaneous luminosity 7.5e33 cm⁻²s⁻¹ @ 50 ns
- post-LS1
 - collision energy

13 TeV

8 TeV

- peak instantaneous luminosity
 1.6e34 cm⁻²s⁻¹ @ 25 ns
 or
 1e34 cm⁻²s⁻¹ @ 50 ns
- Phase 2 HL-LHC
 - collision energy 14 TeV
 - peak instantaneous luminosity 5e34 cm⁻²s⁻¹ @ 25 ns

Data taking scenarios

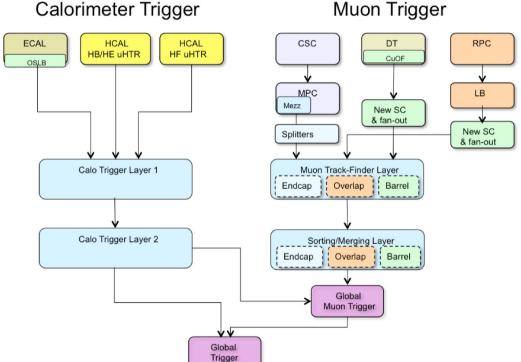
• 2012

 collision energy 	8 TeV	
 peak instantaneous luminosity 	7.5e33 cm ⁻² s ⁻¹ @ 50 ns	peak avg. PU ~ 35
post-LS1		cross-section increase
 collision energy 	13 TeV	by ~ factor 2
 peak instantaneous luminosity 	1.6e34 cm ⁻² s ⁻¹ @ 25 ns	peak avg. PU ~ 40
ОГ	1e34 cm ⁻² s ⁻¹ @ 50 ns	lumi-leveled ? peak avg. PU ~ 50
Phase 2 - HL-LHC		
 collision energy 	14 TeV	
 peak instantaneous luminosity 	5e34 cm ⁻² s ⁻¹ @ 25 ns	peak avg. PU 125~140

Data taking scenarios

8 TeV

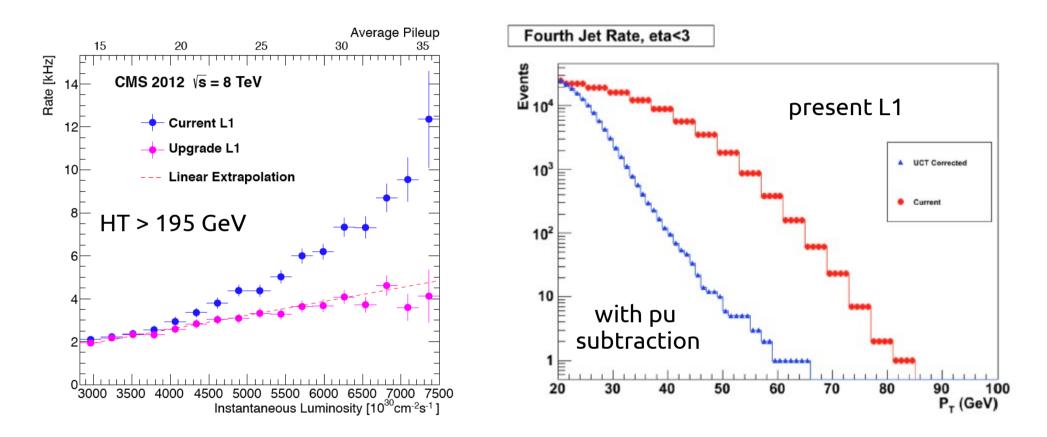
- 2012
 - collision energy
 - peak instantaneous luminosity
 7.5e33 cm⁻²s⁻¹ @ 50 ns
- post-LS1 expected trigger rate roughly "2012" x4 13 TeV collision energy peak instantaneous luminosity 1.6e34 cm⁻²s⁻¹ @ 25 ns 1e34 cm⁻²s⁻¹ @ 50 ns ОГ Phase 2 - HL-LHC 14 TeV collision energy peak instantaneous luminosity 5e34 cm⁻²s⁻¹ @ 25 ns expected trigger rate roughly "2012" x12 or more plus pile-up dependency


post-LS1

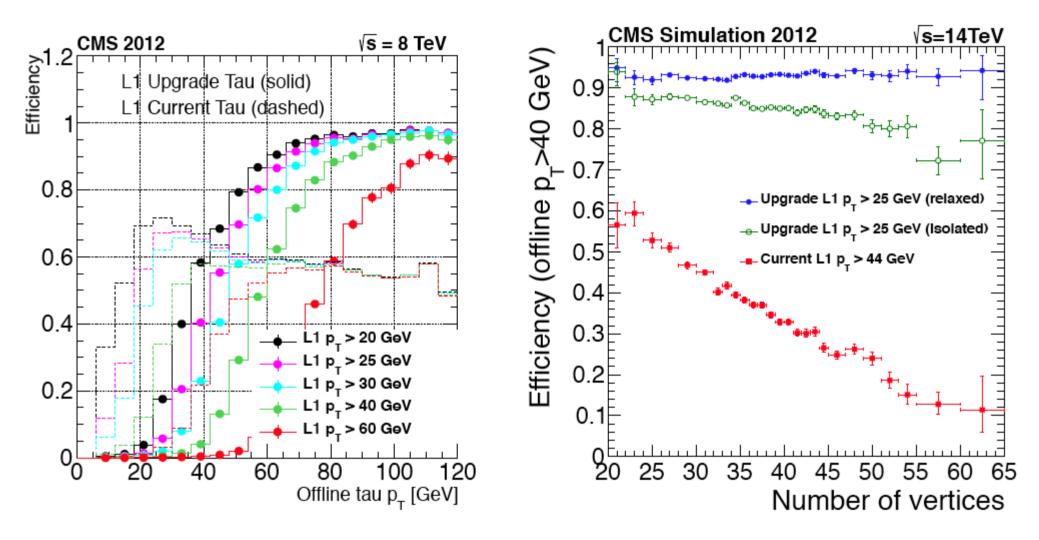
Trigger, post-LS1

- expect ~ **factor 4** in trigger rate increase
 - keeping the same physics acceptance
- but
 - L1 Trigger rate is limited by the detector readout
 - fixed at 100 kHz
 - HLT rate is limited by the offline processing power
 - for 2015, expect to be able to cope with an average HLT rate of **1 kHz**
- how can we deal with it ?
 - improve the trigger selection
 - both for L1T and HLT

L1 Trigger upgrade for Phase 1


- replace the calorimeter, muon, and global trigger
- staged approach
 - first stage installed during LS1, and available in 2015
 - full upgrade commissione during 2015, and available in 2016

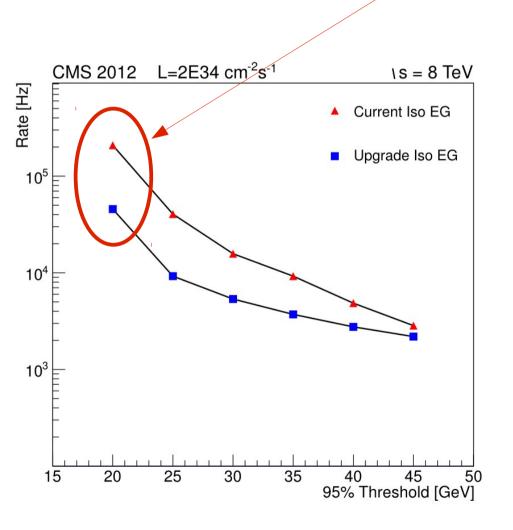
L1 Trigger upgrade for Phase 1

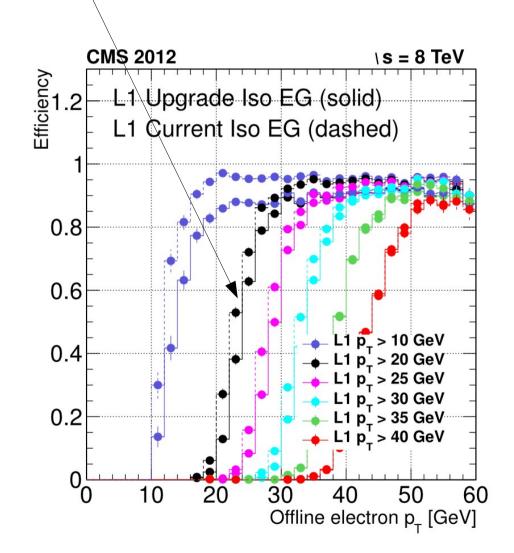

- 2015 Stage 1
 - improved calorimetric trigger
 - pile-up subtraction
 - for jets, energy sums, e/gamma isolation
 - dedicated taus trigger candidates
 - from 2x1 EG object without E/H cut
 - minor improvements to the muon trigger
 - make use of new muon chambers
 - increased granularity of the CSC readout
 - possibility to improve the LUTs used for track building and matching

PU subtraction at L1

effect of pile-up subtraction on energy sums and multi-jet trigger

Tau L1 Trigger

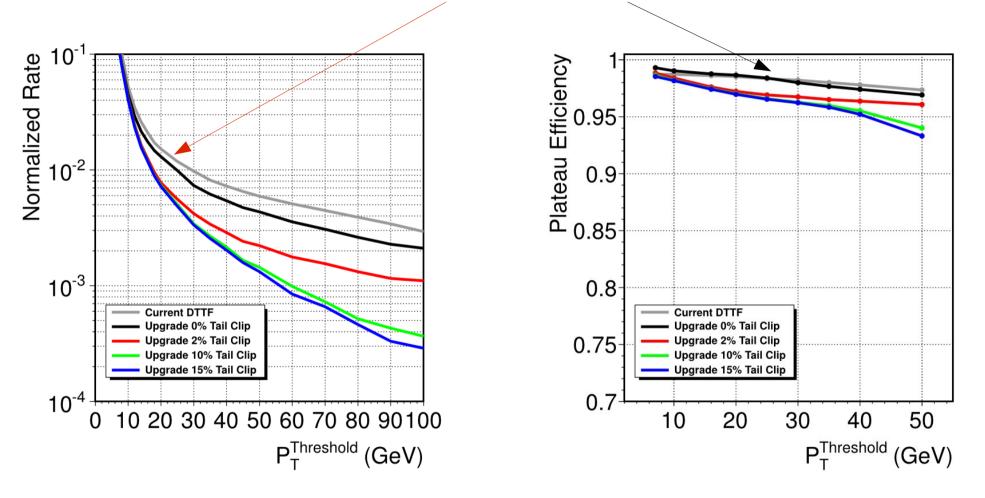



performance of upgraded L1 tau trigger

- improved efficiency at high pT
- improved robustness vs. pile-up

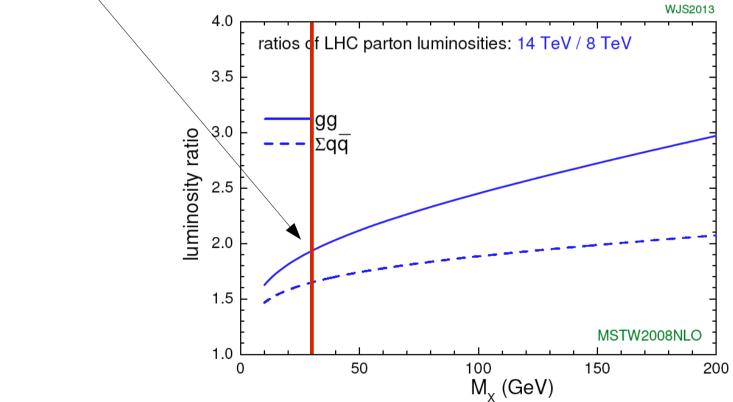
E/gamma L1 Trigger

rate reduction by a **factor 5**, with a **similar** efficiency

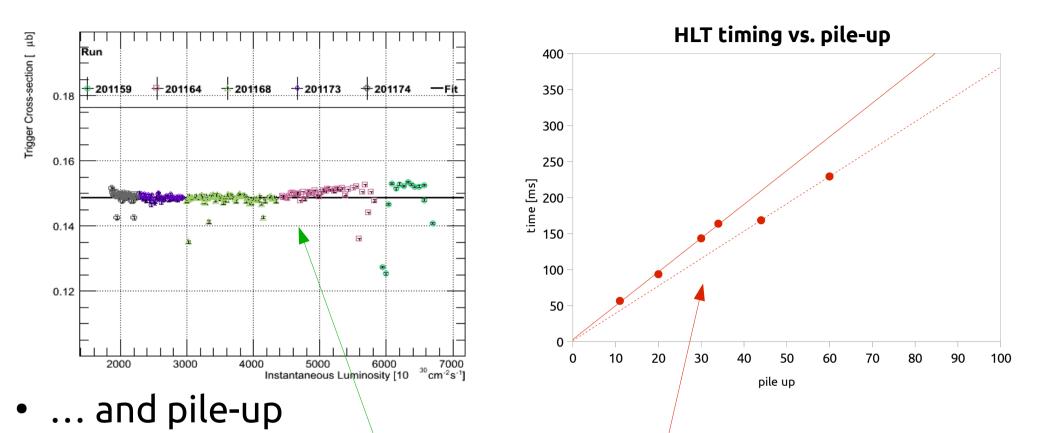


L1 Trigger upgrade for Phase 1

- 2016 Stage 2
 - new muon trigger
 - unified track finder
 - replace DTTF, CSCTS, RPC pattern comparator
 - more powerful track reconstruction
 - muon isolation
 - new calorimetric trigger
 - increased granularity
 - tower-based isolation
 - new Global Trigger
 - increased number of candidates (at least twice as much as now)
 - more powerful logic, improved resolution
 - support for more complex topologies (soft muon b-tagging, VBF jets, ...)


Muon L1 Trigger

rate reduction by a **factor 2 ~ 3**, with a **similar** efficiency



new muon pT assignment (bigger LUTs, post-processing)

- run at 13 TeV
 - the higher collision energy leads to a higher cross-section
 - for the average HLT-accepted events, we expect an increase by a factor ~ 2

- run at 13 TeV
 - the higher collision energy leads to a higher cross-section
 - for the average HLT-accepted events, we expect an increase by a factor ~ 2
- higher luminosity: 1.6e34 cm⁻²s⁻¹ ...
 - a factor ~2 higher than the peak luminosity in 2012
 - similar pile-up
 - overall, **a factor ~4** increase in the expected HLT rate

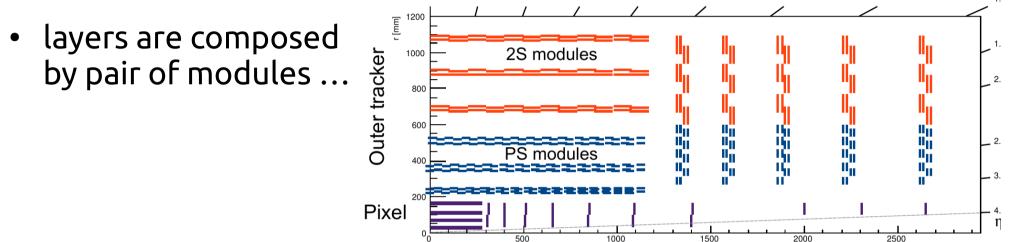
- maximum average pu ~ 40, close to the 2012 value (~35)
- overall HLT rate is **robust** against pile-up
- but the HLT cpu usage increases linearly with pile-up

- plans
 - **double** the HLT rate
 - thanks to the increase in offline storage and processing
 - but we still need an effective reduction by a factor ~2
 - reduce effective rate by a factor 2, keeping the same physics acceptance
 - make better use of the available bandwidth
 - tighten triggers for signal samples, use dedicated triggers for background samples
 - improve online reconstruction and calibrations to match even better the offline and analysis objects
 - make a wider use of tracking and particle-flow based techniques
 - reduce the difference between online and analysis selection cuts
 - increase the available computing power of the HLT farm
 - between +30% and +100%
 - to cope with **higher pile-up** and **more complex reconstruction** code

Phase 2

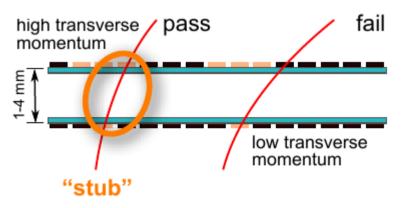
Trigger upgrade for Phase 2

- scenario for Phase 2 (HL-LHC)
 - even higher luminosity (and pile-up)
 - instantaneous luminosity: 5e34 cm⁻²s⁻¹
 - peak pile-up: 125 ~ 140 interactions / event
 - target: keep the same physics acceptance as in 2012
- the trigger system from Phase 1 cannot cope with such high luminosity
- upgrade L1 Trigger
 - higher rate and latency
 - tracking trigger
 - full calorimeter granularity


- upgrade High Level Trigger
 - higher rate
 - more processing power
 - alternative processors

L1 Trigger upgrade for Phase 2

- higher rate and latency
 - the Level 1 Trigger rate and latency are limited by the front-end electronics of the detector
 - upgrade the electronics to support a higher rate and latency
 - increase the L1 Trigger rate from 100 kHz to 500 kHz ... 1 MHz
 - increase the L1 Trigger latency from 4 µs to 10 µs
 - requires replacing the ECAL barrel electronics
 - to go even higher, would need to replace the CSC electronics
- why?
 - rate increasing the readout rate, and thus the L1 trigger rate, is the easiest way to keep lower L1 thrsholds
 - especially for jets, tracking trigger (next slide) mostly helps for leptons
 - **latency** higher latency gives the L1 more time to process the data
 - necessary for tracking trigger

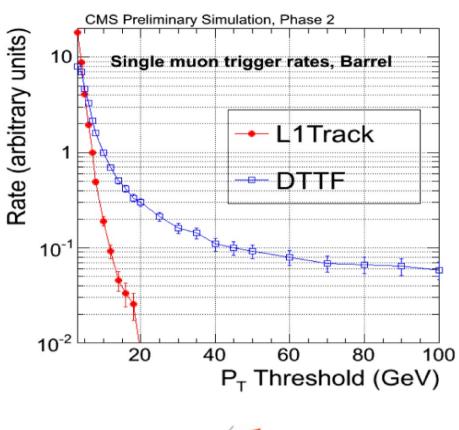

Tracking Trigger

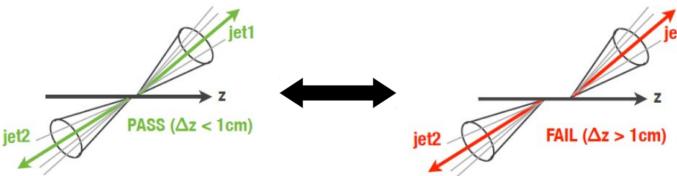
 the upgraded silicon strip tracker is being designed with triggering capabilities

• ... able to distinguish high p_{T} and low p_{T} and tracks

high p_T track (> 2 GeV)
small bending arm
the 2 hits are inside the
coincidence window

low p_T track (< 2 GeV)

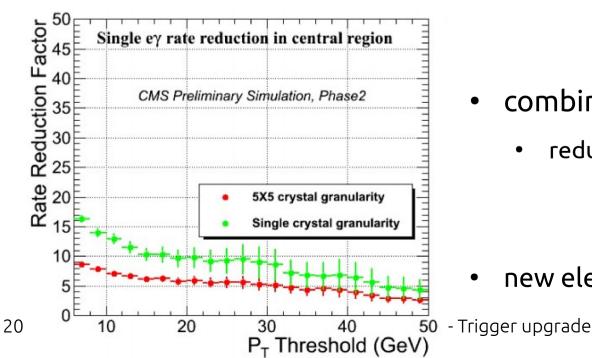

large bending arm

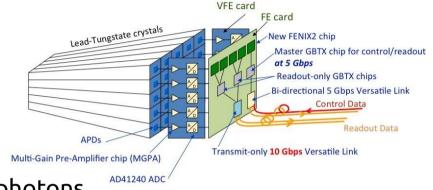

the 2 hits are **outside** the coincidence window

z [mm]

Tracking Trigger

- How is a tracking trigger useful?
 - improve reconstruction at L1
 - combine tracks with standalone muons for a better pT resolution
 - recover rejection power at lower pT threshold
 - tracker-based isolation
 - combine tracks with e/gamma deposits → electrons
 - dZ vertex matching between objects
 - reject combinatorics due to pile-up


Tracking Trigger


• first studies on the impact of a tracking trigger:

Trigger, Threshold	Algorithm	Rate reduction	Full eff. at the plateau	Comments
Single Muon, 20 GeV	Improved Pt, via track matching	~ 13 (central region)	~ 90 %	Tracker isolation may help further.
Single Electron, 20 GeV	Match with cluster	 > 6 (current granularity) >10 (crystal granularity) (η < 1) 	90 %	Tracker isolation can bring an additional factor of up to 2.
Single Tau, 40 GeV	CaloTau – track matching + tracker isolation	O(5)	O(50 %) (for 3-prong decays)	Very preliminary. Work in progress.
Single Photon, 20 GeV	Tracker isolation	40 %	90 %	Probably hard to do much better.
Multi-jets, HT	Require that jets come from the same vertex			Performances depend a lot on the trigger & threshold.

ECAL upgrade and L1 Trigger

- the present L1 Trigger reads the electromagnetic calorimeter with a limited granularity
 - trigger towers, made out of 5x5 crystals
- replace ECAL barrel electronics
 - read the ECAL with **full granularity**
 - improve spike rejection
 - improve spacial resolution for electrons and photons

- combined with tracking trigger
 - reduce electron rate by O(10)

• new electronics needed for 10 us latency

High Level Trigger for Phase 2

- increase the output rate 600 600 → 5 ~ 10 kHz @ 5e34 cm⁻²s⁻¹ 500 500 400 400 increase the cpu power time [ms 300 linear extrapolation 200 200 → 600 ms/ev. @ 5e34 cm⁻²s⁻¹ 100 100 • 5~10x increase in input rate 0 • **1.5x** due to higher collision energy 20 40 60 80 100 120 140 160 pile up \rightarrow factor ~ 50x with respect to 2012 online cluster
- "possible"
 - assuming 20% / year increase in processing power
 - 10 years from now $\rightarrow \mathbf{x6}$ increase

High Level Trigger for Phase 2

- can we take advantage of other improvements?
 - L1 tracking trigger
 - access to L1 tracklets: can be used to seed the HLT tracking
 - no need to redo a similar step \rightarrow substantial saving in cpu
 - parallel processors
 - GPUs, Xeon Phi, ARM, ...
 - HLT relies on the same software used offline
 - if CMS develops its software for one of these architecture, the HLT farm could easily take advantage of it

Conclusions

Conclusions

- Phase 1
 - "closer than you may think"
 - this is no longer considered an "upgrade", it's simply the **next Run !**
 - upgrade and optimisations of the existing systems
 - L1 and HLT are under heavy development
- Phase 2
 - 10 years from now 10 years of work ahead of us :-)
 - large changes to the trigger system
 - work has already started
 - contributions are welcome !